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Abstract—Memory corruption vulnerabilities can lead to software
attacks. Pointer-based memory safety protection has been shown as a
promising solution covering both out-of-bounds and use-after-free errors.
Software only approaches have significant performance overhead. Exist-
ing hardware/software implementations are largely limited to proprietary
closed-source microprocessors, simulation-only studies or require changes
to the input source code.

In this paper, we present a novel hardware/software co-design method-
ology consisting of a RISC-V based processor extended with new in-
structions and microarchitecture enhancements, enabling faster memory
safety checks. A compiler is instrumented to provide security operations
taking into account the changes to the processor. The entire system is
realized by enhancing a RISC-V Rocket-chip system-on-chip (SoC)1. The
resultant processor SoC is implemented on an FPGA and evaluated with
applications from SPEC 2006 (for generic applications), MiBench (for
embedded applications), and Olden benchmark suites for performance.
Our experiments show that the proposed approach achieves up to 3.79X
speedup (average 2.6X) in comparison to the traditional software-based
approach for SPEC2006 while possessing an overhead of 6.33% in terms
of area. This speedup is better than the state-of-the-art approach. Our
security coverage using the NIST Juliet test suite shows better coverage
than the software only method.

I. INTRODUCTION

Memory corruption vulnerabilities can lead to a variety of software
security attacks [1]. The latest Common Weakness Enumeration
(CWE) study [2] states that three of the top five most dangerous
software weaknesses are related to memory safety breaches. Memory
corruption vulnerabilities are categorized into spatial and temporal
errors. While dereferencing an out-of-bounds pointer (e.g., indexing
beyond the bounds of an array) causes a spatial error, dereferencing
a dangling pointer (e.g., “use after free”2) leads to a temporal error.
Since low-level pointers are heavily utilized in C/C++, memory
corruption vulnerabilities are a significant safety issue in C/C++
applications.

Pointer-based checking [3]–[7] has been studied as a method to
ensure memory safety during the execution of a program. Pointer-
based checking adds additional information (usually referred to as
metadata) for each pointer into the program and enhances the program
with the capability to use the metadata to check for spatial and
temporal errors when dereferencing a pointer. For example, by using
the lower and upper bounds of a pointer, one can detect spatial errors
when the program dereferences this pointer during execution.

A pointer-based checking system typically performs three major
types of operations: one, creating metadata when the program creates
a pointer (called metadata initialization); two, performing checks
when pointer dereference occurs (called dereference check); and,
three, storing, moving, and modifying the metadata when pointers
are moved or modified (called metadata propagation). For integrating
these additional operations, the baseline system must be augmented

1source code are available in GitHub https://github.com/Lycheus/SHORE
2https://cwe.mitre.org/data/definitions/416.html
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Fig. 1. A demonstration on the distribution of the security operations in
performance overhead after safety instrumentation.

in software and/or hardware incurring performance and/or hardware
overhead.

Existing pointer-based checking methods have limitations [8].
Software-implemented methods [5] modify compilers to realize
pointer-based checking operations using native instructions available
in the ISA (and requires no additional hardware). Consequently,
these methods suffer from substantial slow-down (e.g., 140% in [5]).
Hardware-implemented methods [4] have better performance than
software-based but demand dramatic hardware changes, such as
adding extra metadata (e.g., tag) to caches, and TLBs, for tracking
the pointers in hardware, due to the lack of compiler support. In
addition, most hardware-related methods are limited to a proof-of-
concept study, where the system is implemented and evaluated on
in-house simulators [9]. Some techniques also have compatibility
issues where the source program to be checked has to be extensively
modified and thus unsuitable for use with legacy code [10].

To overcome these limitations, this paper proposes a hardware/-
software methodology, named SHORE, for realizing cost-efficient
pointer-based checking functionality. SHORE reduces the perfor-
mance overhead with minimal increase in hardware. Fig. 1 illustrates
the security operations overhead distribution from the preliminary
studies. The major overhead on pointer-based solutions is from
the metadata load/store (meta load and meta store) and dereference
checks (load chk and store chk). By characterizing the behavior of
the pointer-based solution, the following solutions are implemented
into the SHORE: 1) to perform fast deference check, SHORE
fuses the dereference check with load/store operations, allowing
the processor to perform load/store and dereference checks in a
single instruction; 2) to reduce the overhead of metadata propaga-
tion, SHORE augments the processor microarchitecture enabling the
processor to automatically perform in-pipeline metadata propagation,
simultaneously when the pointer is moved or modified; and, 3)
compiler support for pointer analysis and instrumenting SHORE’s
new instructions (ISA extension) into the program.

Following the existing studies [5], we also focus on spatial memory
safety in this study, given that the temporal check shares a similar
mechanism and can be extended on top of the spatial check system.
Leveraging the openness and flexibility of RISC-V ISA (Rocket-
core), in this study, we create a SHORE processor by extending a
RISC-V Rocket-core processor (with SHORE ISA extensions and978-1-6654-3274-0/21/$31.00 c© 2021 IEEE
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TABLE I
COMPARISON CHART TO POINTER-BASED RELATED WORKS

Research
Instrumentation

method
Additional
hardware

Type of
shadow memory

Hardware
Propagation

Protection
Implementation

Experiment platform

Hardbound Hardware
Tag + TLB Cache
Shadow register

Disjoint linear mapped Y S Simics simulator

Softbound Compiler NO Disjoint trie N S Software
WatchdogLite Hardware/Compiler AVX2 (wide mode) Disjoint linear mapped N S/T In-house simulator

IntelMPX Hardware/Compiler ISA extension Disjoint trie N S ASIC
Shakti-MS Hardware/Compiler ISA extension Fat-pointer N S/T FPGA
SHORE

(This work)
Hardware/Compiler

ISA extension
Shadow register

Disjoint linear mapped Y S/T3 FPGA

microarchitecture augmentation) and the SHORE compiler by signifi-
cantly augmenting the RISC-V LLVM [11]). To evaluate the overhead
of the SHORE approach, the SHORE processor was implemented on
an FPGA and was tested with SPEC2006 benchmarks as well as other
embedded benchmarks. In addition, for testing security coverage,
Juliet NIST [12] test cases were employed. The key contributions
of this paper are as follows:

• a RISC-V based processor is extended with novel ISA and
microarchitecture extensions to provide efficient memory safety;

• software instrumentation is performed using compiler-based
software analysis and transformations to enhance input programs
to exploit hardware extensions of the processor maximally; and,

• by combining the above hardware and software, for the first
time this paper provides a fully automatic hardware/software
design methodology to instrument C programs with pointer-
based checking functionality, and an extended RISC-V based
processor capable of executing these programs.

The rest of the paper is structured as follows. Section 2 provides
a discussion of related work. Section 3 elaborates our hardware/soft-
ware approach. Section 4 gives the experiment and results. Section 5
provides further discussion followed by Section 6, which concludes
the paper.

II. RELATED WORK

There are many memory protection solutions described in the
literature [3]–[7], [9], [10], [13], [14]. While methods such as
probability-based checking [13] and trip-wire based checking [7] are
widely used, they are limited in their capabilities. Others provide
greater memory safety, such as type-safe system [3], capability-
systems [15] and pointer-based system protection [4]–[6], [9], [10].
In this paper, we focus on the pointer-based memory safety.

In pointer-based protection, pointers are annotated with extra
boundary information (metadata). Hardbound [4] is a hardware ap-
proach to manage metadata, which requires additional tag-cache and
TLB to track pointers and its metadata. Softbound [5] and its temporal
safety counterpart CETS [6] use compiler instrumentation to insert
runtime functions to perform safety operations. WatchdogLite [9]
further replaces runtime functions with instructions and utilize AVX
vector operations to speed up performance for Intel processors. In-
telMPX [16] is the commercial version of the pointer-based protection
implemented by Intel, and BOGO [14] further extended the system
to cover temporal safety. As for RISC-V platform, Shakti-MS [10]
is the only RISC-V implementation using pointer-based protection.

Table I gives an overall comparison to pointer-based protection
related to our work. In comparison, Hardbound relies on an additional
tag cache and TLB to track the register with pointers and metadata,
which introduces considerable size overhead. In SHORE, the pointer
analysis in the compiler is used to eliminate tracking hardware.

Softbound and its temporal safety counterpart CETS utilize com-
piler instrumentation to inline security operations in the form of
software functions. The benefit of using compiler instrumentation
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Fig. 2. Overview of the hardware/software co-design of SHORE.

is that it does not require the user to change the source code
and recompile third-party libraries (source and binary compatibil-
ity). However, the software-based security operations incur high-
performance overhead. To reduce the performance overhead, we fuse
the dereference checking into the load/store instruction of the RISC-
V and propagate the metadata inside the hardware to speed up the
operations.

This is similar to WatchdogLite, but WatchdogLite is a proof-of-
concept implementation on the x86 platform and relies on Intel’s
special AVX extension making it less generic. WatchdogLite can
only run their experiments in their in-house simulator. IntelMPX
is using a trie structure to store the metadata in a disjoint shadow
memory. The trie structure requires additional time to search, which
is less straightforward to the linear mapped shadow memory used by
Hardbound, WatchdogLite, and us. Shakti-MS [10] uses fat-pointers
and stack frame cookies, which will alter the memory layout of the
program stack and break the compatibility rendering it less useful.
In contrast, we use disjoint shadow memory, which does not intrude
user memory space. Moreover, we provide a set of instructions to
access the shadow memory in hardware for improved performance.

III. THE SHORE APPROACH

A. Motivation and Design Goals
The main mechanisms involved in pointer-based memory safety

are the creation, utilization, and movement of the metadata. These

3The temporal safety can be enforced without hardware acceleration by
enabling CETS instrumentation in the compiler. However, this is beyond the
scope of this paper.
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TABLE II
ISA EXTENSION FOR MEMORY SAFETY ACCELERATION

Instruction Format Description

bndr rd, rs1, rs2 store the value of rs1 to base shadow register of rd
store the value of rs2 to bound shadow register of rd

lbd[l/u] rd, offset(rs1) load the metadata of corresponding shadow memory of address in rs1 to rd
sbd[l/u] rs2, offset(rs1) store corresponding shadow register of rs2 to the corresponding shadow memory of address in rs2
l[b/h/w/d/bu/hu/wu].b rd, offset(rs1) bounded load, compare base bound in shadow register of rs1 against the pointer in rs1
s[b/h/w/d].b rs2, offset(rs1) bounded store, compare base bound in shadow register of rs1 against the pointer in rs1
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Fig. 3. SHORE pipeline and shadow memory layout.

metadata-related operations introduce high-performance overhead to
the program.

The operations of creating pointer metadata are added by com-
pilers. The created metadata is stored into an augmented register
file called Shadow Register File (SRF) instead of inside a general-
purpose register file (RF). The SRF helps reduce the register pressure
incurred by the additional metadata. To use the metadata more effi-
ciently, we fuse the dereference-check with the load/store instructions
(see section III-C bounded load/store). The bounded load/store will
automatically use the metadata stored in the SRF to perform the check
without consuming additional cycles. Movement of the metadata has
to be considered for two separate cases: one, when moving metadata
within the core (in-pipeline propagation); and two, when moving the
metadata between the core and the main memory (through-memory
propagation).

In the first case (use), the datapath is augmented to propagate the
metadata in shadow registers when pointer arithmetic is performed.
The in-pipeline propagation eliminates the movement of metadata
which requires additional cycles. For the second case (movement),
main memory has to be enhanced. When a pointer is stored into
memory, the metadata of the pointer also must be stored in a spatially
separated memory. This design is to ensure the metadata will not
intrude in the user memory layout. The spatially separated memory
is formed as a linear mapped shadow memory. The shadow memory is
a mirrored address of the user program. When a user stores a pointer
to the memory, the associated metadata (base/bound) is also stored
to the linear mapped address above the user memory (elaborated in
Fig. 3-1). However, the cost of storing/loading is tripled (additional
load/store of the base and bound). Therefore, we create hardware
instructions to enhance the metadata load/store operations.

B. Approach Overview

Fig. 2 depicts the overview of the SHORE methodology, which
combines the hardware (on the right) and software (left) flows. Using
the base processor, base memory safety operations were first profiled
and analyzed to extract hotspots (similar to Fig. 1). Based on hotspots,
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Fig. 4. Hardware design of the SHORE instructions.

the hardware flow starts to create SHORE ISA to improve the
performance of memory safety operations and reduce overhead. As
shown in Fig. 2, SHORE’s hardware flow includes ISA extension and
microarchitecture augmentation, which aims at improving through-
memory propagation (metadata load/store instructions), in-pipeline
propagation (SRF and propagation circuitry), and the fused check
operation (bounded load/store instructions). In addition, SHORE ISA
provides essential operations such as metadata initialization (bndr
instruction). By augmenting the microarchitecture of the processor,
the resultant processor (SHORE processor) is created.

On the software side, the compiler is modified to include pointer
analysis and identification of the locations for instrumentation (Step
1) and instrumentation (Step 2) on the program’s intermediate repre-
sentation (IR), by utilizing SHORE extensions. The instrumented IR
is passed to the modified code-generation (Step 3, CodeGen) stage,
which includes the added SHORE instructions into the program’s
binary. The hardware backend supported in our design framework
includes an open-source instruction-set simulator (ISS) and an imple-
mentation on the FPGA. In our implementation, the base compiler is
LLVM and the base processor is RISC-V Rocket-core (included in
Rocket-chip SoC).

C. SHORE ISA Extension and Hardware

Register extension for metadata: RF is augmented with an SRF
(Fig. 3-2) and is addressed by the same address bus as the RF. Thus,
each register in the RF is associated with space in the SRF to hold
the associated metadata. The SRF is a 32-entry double-word register
file (32 entries of 129 bits – 64 bits for the bound value and 64 bits
for the base value and 1 bit for isbound flag to indicate the register
contains bounded pointer).

Setup shadow register (bndr): When a pointer is created, the
calculated base and bound values initially reside in RF. To associate
the base and bound values to the pointer, the bndr instruction is
introduced, (listed in the first row of Table II), to store the metadata
to the associated shadow registers in SRF. For example, “bndr RD,
RS1, RS” will store the value of register RS1 to the base shadow
register of RD, and RS2 to the bound shadow register of RD as
shown in Fig. 4(a). The bndr instruction will also set the isbound to
TRUE to enable metadata propagation.

Metadata load and store (sbdl / sbdu / lbdl / lbdu): The metadata
(store,load) x (lower,upper) instructions, listed in the second and third
and rows of Table II, accelerate shadow memory accesses. When
storing a pointer to the memory, the metadata of the pointer will also
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be stored in the linear mapped shadow memory using the sbdl/sbdu
instructions (the ’l’ and ’u’ suffix is to identify the storing is for
base or bound). Shadow Memory Address Calculator (SMAC) unit
calculates the address of the shadow memory. The SMAC executes
with the Arithmetic Logic Unit (ALU) in the processor’s execution
stage (Fig. 3-4). It takes the source register outputs and offset to
calculate the shadow memory address for the following MEM stage.
The calculation of the shadow address is given by Eq. 1 and hardware
implementation shown in Fig. 4(c).

shadow address = shadow offset+ 2 ∗ (RS1 + imm) (1)

The design requires the addition of three new 64-bits control registers
(SHORE CSRs): one register for each of the three operating modes
(machine, supervisor, and user). Within each CSR register, the highest
bit is the enable flag of the memory safety protection. When the
highest bit of CSR is set to zero, the memory safety mechanism
will be bypassed (used for legacy libraries). The lower 63 bits of the
CSR store the shadow memory offset address for SMAC as shown
in Fig. 3-5.

Bounded load/store (load.b/store.b): The bounded load/store in-
structions listed in the fourth and fifth rows Table II further acceler-
ates the security operations. In pointer-based memory safety, checking
happens when accessing the memory. By combining the checking
with the load and store operations into a single instruction can further
improve performance. These instructions are created in addition to the
original load and store operations which are preserved in our system.
Hence third-party libraries that are not instrumented by our compiler
can still work with the generic load/store instruction. Metadata
Checking Unit (MCU) is the checking unit we have introduced. MCU
resides in the execution stage past the ALU, as shown in Fig. 3-3.
The checks are done after the address calculations. When a load/store
instruction is dispatched, the MCU takes the memory access-pending
address and tests against the metadata that has been passed through
the pipeline from the shadow register. If the address fails the check,
then the unit raises an exception at the EX stage, which halts the
pipeline and jumps to the exception handler as shown in Fig. 4(b).

In-Pipeline Base-Bound Propagation: In Fig. 3-6, for any oper-
ation that writes back to the register file, the corresponding metadata
in the shadow register is propagated to the destination under the
following conditions: if both sources or neither source is bounded
then the destination register will be set to be unbounded; if one of
the sources for the operation is bounded, then the bounds from the
bounded source is propagated to the destination; immediate values
are treated as unbounded sources. This is shown in short pseudocode
in the following Listing 1.

1 e.g., [add rd, rs1, rs2]
2

3 rd <= rs1 + rs2;
4 if (rs1.isbound == rs2.isbound){
5 //both source register are unbound or bounded
6 rd.shadow == NULL;
7 //destination set to unbound
8 rd.isbound == false;
9 } else if (rs1.isbound == true)

10 rd.shadow <= rs1.shadow;
11 else // rs2.isbound == true
12 rd.shadow <= rs2.shadow;

Listing 1. Pseudocode for in-pipeline propagation in ADD instr.

This propagation allows for pointer arithmetic to work as the
programmer intended, without the compiler having to modify the
metadata. To properly integrate this propagation into the pipeline, the
base and bound values must be passed down to the pipeline in the
same fashion as the register values as illustrated in Fig. 3-7. To ensure
all the other parts of the safety system have access to correct control
signals, the control signals must be routed through the pipeline and
support bypassing (forwarding). This requires expanding the stage
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Fig. 5. The speedup factor (higher the better) comparison between
IntelMPX, WatchdogLite and SHORE (this work) in SPEC2006.

buffers to also hold the metadata, and to route the data between
buffers and to units.

D. SHORE Compiler Support

To support the hardware and enforced memory safety, several
compiler instrumentations are performed in LLVM intermediate rep-
resentation (IR). There are three goals for compiler instrumentation:
one, bind the metadata to the shadow register; two, to perform
through-memory bounds propagation; and three, to perform bounded
load/store transformation.

Metadata binding to Shadow Register: To bind the associated
metadata to the pointer when pointers are created statically, the
compiler calculates the base and bound values and inlines an “bndr”
instruction to bind the metadata to the shadow register corresponding
to the register that contains the pointer. If a pointer is created
at runtime, e.g., using malloc(), a function wrapper is created for
pointer-creation functions and the shadow register is set up in the
wrapper. The instrumentation is performed at the IR level.

Through-Memory Bounds Propagation: Using the above instru-
mentation, the metadata of pointers is calculated and loaded into
shadow registers. From time to time, a pointer will be stored from
a register into memory, thus the corresponding metadata data in the
shadow register shall also be transfer into the memory. Our approach
is to use instructions to invoke the transfer of metadata to and from
memory. First, the compiler has to locate the load and store locations
of the pointer in IR, then instrument the lbd and sbd instructions to
store the metadata from the shadow register to the linear mapped
shadow memory (or vice versa). In this way, the Through-Memory
Bounds Propagation is achieved in an implicit style. This means only
loading and storing a pointer to memory will be instrumented with a
metadata load/store. Note that this is different from Hardbound [4],
which does not differentiate between pointers and normal data in
registers and therefore, explicitly loads and stores all metadata when
memory operations occur.

Bounded Load/Store Transformation: This instrumentation is to
locate memory dereference in the program. When memory safety
is enforced, the compiler will substitute the protected load/store
instruction into the bounded load/store. The bounded load/store will
perform the checking in the pipeline with the corresponding metadata
inside the shadow register as shown in Fig. 4(b).

Kernel memory space modification: To reserve the memory
address for the disjoint linear mapped shadow memory, the kernel
virtual memory space has to be modified. The kernel used here is the
proxy kernel (pk) [17]. In pk, we set the address of the user stack top
(highest address of user memory) to the third of the original address
and aligned with the page size as shown in Fig. 3-1.

E. Eliminating Shadow Stack

When a pointer is passed into a function, the corresponding
metadata of the pointer also must be passed into the function. An
obvious method is to use an additional stack (shadow stack) in the
memory, as demonstrated in [5], [9]. By taking advantage of the
in-pipeline propagation hardware and compiler support in SHORE,

292

Authorized licensed use limited to: UNSW Library. Downloaded on January 30,2022 at 12:58:17 UTC from IEEE Xplore.  Restrictions apply. 



Mibench Olden

Fig. 6. The performance overhead (lower the better) between Softbound, SHORE and SHORE-ESS.

whenever there is a sufficient number of registers available (e.g.,
eight in RISC-V) for passing the function arguments (i.e., then
no arguments are passed via the stack), SHORE can eliminate the
shadow stack to further improve performance by reducing memory
accesses while checking the pointer bounds. When the shadow stack
is eliminated, pointer metadata will reside in the shadow register file
and propagate automatically along with the pointer during function
calls. This scheme where the shadow stack is not used is denoted
as SHORE-ESS and is used for programs that have less than eight
arguments in function calls. This is typically the case in embedded
workloads.

IV. EXPERIMENT AND RESULTS

A. Experimental setup
For performance evaluation on the SHORE architecture, our hard-

ware platform (shown in Table III) is based on the Rocket-chip project
from RISC-V foundation [18]. The implementation of the SHORE
RISC-V processor (RV64GC) is on the Xilinx ZCU102 FPGA board.
There are two configurations of our hardware:

• SHORE: The baseline SHORE with shadow stack to support
generic workload such as SPEC2006 [19].

• SHORE-ESS: Based on SHORE but improved for embedded
workload, using shadow registers to replace the shadow stack.
Passing of metadata for pointer arguments utilizes the shadow
registers.

The software benchmarks in use are applications from SPEC
CPU2006 [19] suite to simulate generic workloads, and MiBench
and Olden [20], [21] suites for embedded workloads. For security
coverage, spatial related test cases in NIST Juliet test suite [12] are
used. There are total of 6814 spatial-related test cases from five
subcategories. These subcategories are stack-based buffer overflow
(CWE121, 2786 cases), heap-based buffer overflow (CWE122, 1684
cases), buffer underwrite (CWE124, 844 cases), buffer overread
(CWE126, 656 cases), and buffer underread (CWE127, 844 cases).

B. Comparing to IntelMPX WatchdogLite in SPEC2006
Fig. 5 presents the speedup factor between IntelMPX (MPX) [16],

WatchdogLite (WDL) [9] and SHORE when executing SPEC
CPU2006 benchmarks. Both MPX and WDL are executed on x86
(MPX is on real hardware, while WDL is evaluated on a sample-
based simulator), while our implementation is on the SHORE-RISC-
V (executed on an FPGA). Speedup factor is used to show cross-
platform comparison. The speedup factor is calculated using the

TABLE III
RISC-V SYSTEM CONFIGURATION

Attribute Setting

ISA GC (IMAFDC)
L1D-Cache 32KiB 8-way 64B
L1I-Cache 32KiB 8-way 64B
L1D-TLB 32 entries
L1I-TLB 32 entries
L2-TLB 128 entries

equation in Eq. 2. The software-only approach (Softbound) is set as
the baseline. The cycle numbers of Softbound is extracted for each
of the corresponding works (e.g., MPX speedup is calculated using
Softbound cycle number from [8]). The cycle numbers of the speedup
calculation for MPX4 is extracted from the GitHub repository of the
paper [8]. The WDL cycle counts are extracted from Fig. 3 of [9],
the wide mode of WDL uses the AVX2 accelerated version while the
narrow mode uses scalar registers. The cycle numbers of SHORE
is collected from our FPGA experimental platform and extracted
from the performance counter in the SHORE hardware. For SPEC
benchmarks there were no extensive results available for comparison
on the RISC-V platform and thus had to be compared against the
x86 platform.

Speedup =
Softboundcycle

HW techniquecycle
(2)

Six cases from the SPEC CPU2006 benchmark suite are shown
in Fig. 5. The mean value of speedup using the MPX is 1.22
times, WDL (narrow) 1.43 times, WDL (wide) is 1.54 times and
SHORE is 2.60 times. Note, however, the underlying platforms are
different. The SHORE speedup is better than the other three hardware
implementation. WDL uses linear mapped shadow memory while
MPX is using a trie. Both SHORE and MPX focus on spatial
safety, while WDL handles both spatial and temporal safety. SHORE
exhibits higher speedups for two reasons. One, the use of shadow
registers and in-pipeline propagation to help reduce register conflicts;
and two, the use of linear mapped shadow memory for faster metadata
accesses.

C. Embedded workloads performance overhead

As stated in the experimental setup, there are two configurations
for use within the SHORE memory safety system: one is SHORE
for generic applications, and the other is SHORE-ESS which is
created for embedded workloads. Here performance overhead is used
for analysis since the same RISC-V architecture is utilized. The
performance overhead is calculated by dividing the number of clock
cycles taken by the memory safety enhanced program by the number
of clock cycles taken by the native program (default compiler without
third-party protection). The results are given as a percentage. The
formula of the performance overhead is given in Eq. 3.

Perf.overhead = (
Protection methodcycle

nativecycle
− 1)× 100 (3)

The results showing the performance overhead is in Fig. 6. The mean
values of the overhead for Softbound, SHORE, and SHORE-ESS
are 170.37%, 48.83%, and 36.79% respectively. The first seven test
cases are from Mibench and the last five are from Olden. Olden
test cases are more pointer-intensive and pass pointers in function
arguments more frequently. Therefore, SHORE-ESS is more efficient
in the Olden workloads. Generally, SHORE-ESS which utilizes the

4IntelMPX is instrumented with the Intel ICC compiler
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Fig. 7. The security coverage (higher the better) of NIST Juliet test suite.

shadow registers to pass metadata along with pointers in function
arguments shows approximately 12.04% improvement (from 48.83%
to 36.79%) in performance overhead, over the SHORE.

D. Hardware overhead
Table IV shows the overhead of the hardware cost in FPGA over a

generic RISC-V Rocket-chip. The overhead of look-up tables (LUTs)
is 6.33%, and flip-flops (FFs) is 4.73%. There is no additional cost
in DSP and RAM blocks. The main contributor to the additional
hardware cost is from shadow registers and the hardware support for
bypassing (forwarding) as described in the In-pipeline Base-bound
Propagation in Sec. III-C. The SHORE processors had 11% decrease
in clock speed when compared to the baseline Rocket-chip. However,
we believe this can be improved with further optimization.

TABLE IV
HARDWARE OVERHEAD OF THE SHORE RISC-V

Resource Base Processor SHORE Overhead

LUTs 37346 39710 6.33%
FFs 16916 17716 4.73%

E. Security coverage
The NIST Juliet test suite is used for the security-oriented bench-

mark. Three compilers are used to demonstrate security coverage.
The GCC 7.4 is the default compiler in the Ubuntu 18.04 Linux
distribution. The original Softbound is based on LLVM 3.9 from the
Softbound public source. The SHORE compiler is based on LLVM
8.0 with our ISA extended RISC-V. WDL toolchain is not publicly
available and thus not available security coverage study. In-depth
study of MPX coverage can be found in [8], [14].

Fig. 7 illustrates the coverage of the cases that can be detected
under these three solutions. Out of the 6814 test cases, the GCC with
built-in protection can detect 937 cases (13.75%). The Softbound
can detect 4577 cases (67.17%), and the SHORE can detect 4807
(70.55%) cases. The cases that can be detected in Softbound but
not in SHORE happen in the CWE124 buffer underwrite categories.
The cases that can be detected in SHORE but not in Softbound falls
into the categories containing allocation/declamation in a loop. In
summary, the SHORE has higher security coverage (3.38%) than the
Softbound method.

V. DISCUSSION

Memory footprint — Pointer-based check approaches incur ad-
ditional memory size to store the pointer metadata, despite using
disjoint or inline pointer metadata (fat-pointer). Existing studies [9]
measure the overhead of program memory footprint by counting the
additional memory pages allocated for the metadata memory space
(similar to our shadow memory). In our experiments, we pre-allocate
a sufficiently large memory space for our shadow memory, in the
RISC-V proxy kernel (PK), which is a lightweight proxy kernel.
Hence, it is not viable for us to directly measure how many pages are
allocated for shadow memory. However, because our shadow memory
shares the same layout (linearly mapped mirrored the program’s

sections) with [9], we estimate our memory footprint overhead is
similar, which is 56% on average.

Temporal safety — In this paper, similar to the prior arts [5],
our SHORE approach at first focuses on spatial memory safety. The
reason is: 1) spatial safety issues are the major portion of the memory
safety issues; and, 2) temporal safety protection can be extended
directly on top of the spatial safety system, for example, by extending
the metadata to include keys and locks [6].

VI. CONCLUSION

In this paper, we presented the SHORE architecture, a hardware/-
software co-design method based on a RISC-V based platform to
accelerate pointer-based memory safety. SHORE is the fastest system
which targets an open architecture that can enforce spatial memory
safety without modification of the source code. In performance, the
SHORE has 2.6X speedup, which is better than other hardware
implementations such as IntelMPX and WatchdogLite with minimal
hardware overhead. In security coverage, SHORE has 3.38% higher
coverage in Juliet test suite than the Softbound. Overall, SHORE
provides high-performance, low-cost and FPGA-ready hardware for
RISC-V based processors for improved memory security.
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