
HWST128: Complete Memory Safety Accelerator on RISC-V with
Metadata Compression

Hsu-Kang Dow
University of New South Wales

Sydney, Australia
h.dow@unsw.edu.au

Tuo Li∗
University of New South Wales

Sydney, Australia
tuoli@unsw.edu.au

Sri Parameswaran
University of New South Wales

Sydney, Australia
sri.parameswaran@unsw.edu.au

ABSTRACT
Memory safety is paramount for secure systems. Pointer-based
memory safety relies on additional information (metadata) to check
validity when a pointer is dereferenced. Such operations on the
metadata introduce significant performance overhead to the system.
This paper presents HWST128, a system to reduce performance
overhead by using hardware/software co-design. As a result, the
system described achieves spatial and temporal safety by utilizing
microarchitecture support, pointer analysis from the compiler, and
metadata compression. HWST128 is the first complete solution for
memory safety (spatial and temporal) on RISC-V. The system is
implemented and tested on a Xilinx ZCU102 FPGA board with 1536
LUTs (+4.11%) and 112 FFs (+0.66%) on top of a Rocket Chip proces-
sor. HWST128 is 3.74× faster than the equivalent software-based
safety system in the SPEC2006 benchmark suite while providing
similar or better security coverage for the Juliet test suite.

CCS CONCEPTS
• Security and privacy→ Hardware security implementation; Em-
bedded systems security.

1 INTRODUCTION
Modern, complicated software is vulnerable to memory corrup-
tion [1]. Two out of the top three most dangerous software weak-
nesses are memory corruption related [2]. Memory unsafe lan-
guages, such as C and C++, do not restrict low-level pointer access.
Therefore, a pointer can be dereferenced outside of its allocated
space, causing out-of-bound accesses, known as spatial memory
violation leading to memory corruption. Similarly, when a pointer
is freed, other pointers inherited from the original pointer become
dangling pointers. Adversaries can use a dangling pointer to ac-
cess a memory location that no longer belongs to the original user,
leading to temporal memory violations.

Memory corruption can be prevented by enforcing memory
safety. Pointer-based memory safety algorithms [3–6] have been
proposed to enforce memory safety. Pointer-based memory safety

∗Tuo Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530548

introduces additional information (known as metadata) to prevent
the pointer from accessing invalid memory locations. Spatial mem-
ory safety is performed by introducing the base and the bound
metadata to record the starting and ending addresses of a pointer
(for example, the starting and ending address of an array) when
a pointer is allocated. Then, a boundary check can be performed
when the pointer is dereferenced. Such a check ensures the pointer
will not dereference out of the original designated space, preventing
spatial memory violation.

Temporal safety introduces two additional pieces of information
to the metadata, key and the lock. First, a unique key is assigned to
a pointer when allocated. Then, the key is stored in a lock_location.
The address of the lock_location is called the lock. When a pointer
is dereferenced, the key in the lock_location will be loaded first
using the lock, then compared with the key held by the pointer.
The key will be removed from the lock_location if a pointer is freed.
Therefore, future usage of the old pointer will fail the key check
when a dangling pointer is dereferenced.

However, the pointer-based memory safety algorithm introduces
significant performance overhead due to the additional metadata
operations. Prior research has been done to reduce the performance
overhead introduced by the metadata operations. For example,
Hardbound [4] utilized the sidecar register and tag cache to en-
force spatial memory safety with low performance overhead (for
x86). The open-source project, SHORE [7], adopted the idea of
Hardbound and created a 128x64 bits shadow register file with in-
pipeline metadata propagation, and then fused the checking process
with the load/store instruction to further reduce the performance
overhead (on RISC-V). Note, SHORE was limited to spatial memory
safety only.

HWST128, the work described in this paper, provides both spatial
and temporal safety for RISC-V architectures. A novel, configurable
metadata compression technique has been proposed in HWST128 to
fit the additional temporal metadata into a 128-bit shadow register
file. A small TLB-like keybuffer is proposed in the microarchitec-
ture to reduce the additional performance impact from temporal
security operations. Thus, HWST128 achieves both spatial and tem-
poral safety without additional hardware cost while with minimal
impact on performance. HWST128 is the first complete solution
for memory safety on RISC-V with hardware modifications and
compiler support. The key contribution of HWST128 are as follows:
1) the first spatial and temporal safety accelerator on RISC-V; 2) a
novel metadata compression scheme allowing for minimal hard-
ware overhead; 3) a keybuffer to reduce the performance impact
from temporal operations; and, 4) open-source tool-chain for the
FPGA-ready RISC-V platform.1 The rest of the paper is structured

1https://github.com/Lycheus/HWST128

709

https://doi.org/10.1145/3489517.3530548
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530548&domain=pdf&date_stamp=2022-08-23

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Hsu-Kang Dow, Tuo Li, and Sri Parameswaran

compressed metadata

compressed metadataptr

base
bound

GPRF SRF

C

Metadata bound with ptr

check

deref. check
ld.b

1

D

bndr[s|t]

lock
key

3

GPRF SRF

S.MemMem

compressed metadata

comp. upper

ptr

5
Store pointer to

memory

comp. lower

sbd

5

2

compressed metadataptr

GPRF SRF

ptr

4 4

(b) In-pipeline propagation

ptr

GPRF SRF

S.MemMem

comp. upper

bound’
base’

D

ptr

7

comp. lower

ptr’

6

compressed metadata

Metadata load to GPRF
lbas/lbnd/lkey/lloc

Load pointer to
register

(c) Through-memory propagation (store) (d) Through-memory propagation (load)

Metadata load to SRF

(a) Metadata create, bound and check

Automated in
pipeline with

bypass network

lbd[l|u]s

Metadata store

key

base

shadow stack

lock_location

.text

lock

range

sh
ad

o
w

 m
em

u
ser m

em

‡

stack

§

*

†

*: (§<<2)+offset
‡: shadow start (csr.sm.offset)
†: user stack end
§: pointer’s container address

pointer

Figure 1: Memory layout of the linear-mapped shadow memory and metadata flow between general purpose register files
(GPRF), shadow register file (SRF), user member (MEM) and shadow memory (S.Mem).

as follows. Section 2 provides a discussion of related work. Section
3 elaborates on our hardware/software/compression approach, and
Section 4 describes the experimental setup. Section 5 provides re-
sults discussion, followed by Section 6, which concludes the paper.

2 RELATED WORK
Various algorithms exist to detect and protect from memory cor-
ruption. Tripwire-based [8], probability-based [9], and colouring-
based [10] are widely used but have limitation in enforcing temporal
and spatial memory safety. Capability-based methods [11] require
a complete overhaul of the system memory design, limiting the
ability to support legacy programs.

Pointer-based algorithms [3–6, 12–14] allow fine-grained protec-
tion for all memory accesses to memory. Three challenges present
themselves when utilizing pointer-based algorithms. First of these is
the compatibility of the programs. Pointer-based algorithms require
the program to be instrumented with security operations. However,
directly changing the source code of the program is undesirable.
SoftboundCETS (SBCETS) [5, 6] utilizes the LLVM compiler [15]
instrumentation and runtime library wrappers to maintain source
compatibility (without the need to change the source code) and bi-
nary compatibility (without the need to recompile the libraries) [1].

The second is the memory space for metadata. Pointer-based
memory safety algorithm needs the metadata for protection. Where
to store the metadata becomes an issue. Works such as SHAKTI-
MS [16] concatenated the metadata to the pointer, making what is
known as a fat-pointer. This method will intrude upon the stack
space during a function call, thus breaking binary compatibility. An-
other technique stores the metadata separately from the pointer [4,
5]. Thus, creating a disjoint shadow memory for metadata storage.
Disjoint shadow memory can be made as a trie or a direct linear
map of user memory space. The benefit of a shadow trie is the bet-
ter utilization of the user address space. However, a linear-mapped
shadow space is more hardware-friendly, simplifying the hardware
design for better performance.

The third is the performance overhead introduced by the meta-
data operations. The approach to mitigate the performance over-
head is to utilize hardware accelerators. WatchdogLite (WDL) [12]
uses the x86 256-bit AVX instructions to handle the metadata. WDL
provides spatial and temporal memory safety and has excellent per-
formance. However, it is a closed source project and is simulation-
based. BOGO [14] utilizes the IntelMPX [13] spatial memory protec-
tion extension and extends the protection to temporal safety with

little additional cost. BOGO achieves this by scanning and nullify-
ing pointers’ boundaries when pointers are freed. However, BOGO
can only provide partial temporal safety (use-after-free) instead of
complete temporal safety (includes use-after-return). SHORE [7]
is another hardware accelerator based on RISC-V, which is open
source but limits the acceleration to spatial safety only. SHORE
utilize a 128-bit shadow register file to handle the metadata in the
pipeline. In contrast to the above works [7, 12, 14] HWST128 pro-
vides both spatial and temporal safety acceleration with compressed
metadata (so a 128-bit shadow register file is sufficient) to reduce
the storage overhead.

3 METHODOLOGY
Pointer-basedmemory safety relies on additional information (meta-
data) of pointers to check whether a pointer is legal when it is
dereferenced. However, the creation,movement, and utilization
of metadata introduces significant performance overheads to the
system. Additionally, the original code requires instrumentation.
Automating this instrumentation significantly reduces the onus on
the programmer and allows for legacy code to be instrumented eas-
ily. Therefore, HWST128 aims to reduce the impact on performance
and the user by the utilization of hardware/software co-design. As
a result, HWST128 achieves temporal and spatial memory safety
with low overhead by utilizing microarchitecture support, pointer
analysis from the compiler, and metadata compression.

Threat model and assumptions — HWST128 hardware is
based on RISC-V Rocket Chip project [17], where the baseline
processor is assumed to be trusted and no underlying hardware
bugs [18] leads to memory corruption. Furthermore, HWST128
assumes no vector instructions are used for memory accesses, and
the adversary cannot corrupt the metadata by using non-memory-
safety related attacks or illegitimately obtain higher (root) privilege.
As HWST128 relies on the pointer analysis of SBCETS, we assume
that SBCETS instrumentation and function wrappers are covered
for all the libraries used when complete coverage is required.
3.1 Metadata for memory safety
Metadata is created for spatial and temporal protection. Metadata
for spatial memory protection contains two parts, base and bound.
When a pointer is created, the corresponding base metadata points
at the start and bound metadata points at the end of the allocated
memory. When the pointer is dereferenced, the dereferenced ad-
dress will be checked against the base and the bound. This action
will ensure that memory access will not be out-of-bound, enabling
spatial safety.

710

HWST128: Complete Memory Safety Accelerator on RISC-V with Metadata Compression DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Metadata bitwidth

127 0Uncompressed metadata fields (256 bits)

20 bits

basebound
keylock

baserangekeylock
Compressed metadata fields (128 bits)

baserange
4 bits key (64 bits)

colorlock

44 bits 29 bits 35 bits

27 bits15 bits4 bits18 bits

upper lower

Embedded

Figure 2: Metadata fields.

Metadata for temporal protection also contains two parts, the
key and the lock. A unique key is assigned to the pointer and saved
in a lock location when a pointer is created. The address of the lock
location will become the lock metadata. The key and lock will bind
to the pointer. If the pointer is later freed, then the key in the lock
location will be erased. When a pointer is dereferenced, the key
stored in the lock location will be checked against the key held by
the pointer. If the pointer has been freed or reassigned previously,
the key held by the pointer will not match the key stored in the
lock location. Thus, the use-after-free (heap) and use-after-return
(stack) temporal attack is detected by checking the key, enabling
temporal safety.

3.2 Metadata Flow
In pointer-based memory safety, each pointer will come with four
pieces of metadata (base/bound/key/lock). These metadata require
additional space to store. When a pointer is in the general-purpose
register file (GPRF), the metadata are also in registers for derefer-
encing checking. The metadata will occupy the registers and cause
register spilling, which causes performance degradation. Therefore,
a shadow register file (SRF) is proposed to mitigate this problem.
An SRF is an additional register file that resides next to the GPRF as
shown in Fig. 3 decode stage. The SRF has a one-to-one relationship
with the GPRF, which mean that for each register in GPRF, there
will be a corresponding shadow register to store the metadata. In
HWST128, the SRF is 128-bit to contain the four metadata.

When the metadata is bound with the pointer, if the pointer
moves from the GPRF to memory, the corresponding metadata also
needs to move from register to memory, namely, through-memory
propagation. Therefore, additional space needs to be allocated in
memory to store the additional metadata. This additional space is
called shadow memory (S.Mem). Because each 64-bit pointer re-
quires 128-bit metadata, thus, two-third of the user memory address
must be reserved for creating a linear-mapped shadow memory
(LMSM), as shown on the left-most side of Fig. 1.

Metadata creation and binding —When a pointer is allocated
(Fig. 1-a1), the starting and ending address of the allocated space
of the pointer (base/bound) and a unique key with a pointer (lock)
pointing to a pre-allocated memory (lock_location) will be created
in the GPRF. Next, the metadata (base/bound/key/lock) will bind to
the pointer (Fig. 1-a2) in the corresponding SRF, using bounding
instructions (bndr[s/t]- instructions created for memory safety)
with spatial and temporal metadata compression in (C) of Fig. 1-a1.
The binding instructions compresses the metadata and places them
in the SRF – see Section 3.3 for detail.

Metadata usage — When the pointer is dereferenced (Fig. 1-a3)
with the bounded load/store instruction, the compressed metadata
will be decompressed without it going to the GPRF (D). The address
of the pointer is checked against the base and the bound. Finally, the
lock address of the pointer will be dereferenced to load the key and
compared against the key held by the pointer to check if they are

identical with the temporal check instruction (tchk). If all checks
are passed, then the pointer is dereferenced.

Metadata in-pipeline propagation—Themetadata of a pointer
is bound in a corresponding register, e.g., if the pointer is in $R_n,
the metadata of the pointer will be bound to $SRF_n. Therefore,
when the pointer is moved to a different register, the corresponding
shadow register’s metadata will be transferred to another shadow
register (Fig. 1-b4). The register file level of metadata propagation
is handled in the hardware pipeline and requires no additional
instruction for the movement.

Metadata through-memory propagation — When a pointer
is stored into the memory (Fig. 1-c5), the corresponding metadata
that binds with the pointer in the SRF will be stored into the LMSM
with the metadata store instruction (sbd[l/u]). The target shadow
address for the metadata is calculated using a preset offset in a
control status register (CSR) set at the beginning of a program.
The calculation of the target address in LMSM for a given pointer
is shown in Eq. 1, where AddrLMSM is the target address to the
linear-mapped shadow memory for metadata, Addrptr_container is
the address of the container of the pointer, and CSRoffset is the preset
offset in CSR.

𝐴𝑑𝑑𝑟𝐿𝑀𝑆𝑀 = (𝐴𝑑𝑑𝑟𝑝𝑡𝑟_𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ≪ 2) +𝐶𝑆𝑅𝑜 𝑓 𝑓 𝑠𝑒𝑡 (1)

Similarly, when the pointer is loaded back from memory, the
corresponding metadata is loaded from the shadow memory. The
metadata can be loaded (with created instructions lbd[l/u]s) to
one shadow register (Fig. 1-d6) or multiple general-purpose regis-
ters (lbas/lbnd/lkey/lloc) (Fig. 1-d7). The destination depends on
whether it is a user program (check instrumented in code) or third-
party linked libraries (check instrumented in a function wrapper),
e.g., glibc. A decompression process will be applied before the meta-
data is loaded back from S.Mem to GPRF.

3.3 Metadata Compression
Our work is based on the RISC-V RV64 instruction set, using a 64-bit
address and data path. Initially, 64-bits are allocated for each meta-
data field (base/bound/key/lock). The four 64-bit metadata requires
four additional loads and stores when the pointer is transferred
between register and memory. However, 256-bit for the metadata
is not necessary, as this data can be compressed as shown below.

An example of metadata fields layout is shown in Fig. 2, at the top
of the figure is the uncompressed metadata, each of the metadata
will occupy 64 bits, and each load/store can only store one field at a
time. However, for a system with 256 gigabytes of memory, the user
pointer does not exceed more than 38 bits of virtual addressing. Fur-
thermore, the bit width of the base address can be reduced further
with address alignment, as memory access in RISC-V RV64 is 8-byte
aligned. The alignment can save an additional three bits in the base
metadata Therefore, the base metadata can be compressed into 35
bits. A similar approach can be applied to the bound metadata.

A new type of metadata called “range” can be created by subtract-
ing the address of base from the bound as shown in Eq. 2. The bit
width of range is determined by the largest object of the program
(Eq. 4). In our tests, the range bit needs to be at least 25 bits to pass
the SPEC2006. Similarly, for SPEC2006, support is needed for up
to one million unique pointers. Thus, the lock requires 20 bits to
point to one million entries. The rest of the 44 bits are assigned
to the key metadata The symbols used in Eq. 2-6 are as follows:

711

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Hsu-Kang Dow, Tuo Li, and Sri Parameswaran

BIT[base|range|lock|key] is the bit width of the (base/range/lock/key)
address; and, Addr[base|bound] is the address of the base and bound.

𝑟𝑎𝑛𝑔𝑒 = 𝐴𝑑𝑑𝑟𝑏𝑜𝑢𝑛𝑑 −𝐴𝑑𝑑𝑟𝑏𝑎𝑠𝑒 (2)

𝐵𝐼𝑇𝑏𝑎𝑠𝑒 =

⌈
𝑙𝑜𝑔2 (

𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒

3
)
⌉
− 3 (3)

𝐵𝐼𝑇𝑟𝑎𝑛𝑔𝑒 = 𝑙𝑜𝑔2 (𝑚𝑎𝑥 ({𝑟𝑎𝑛𝑔𝑒1, ..., 𝑟𝑎𝑛𝑔𝑒𝑛})) − 3 (4)
𝐵𝐼𝑇𝑙𝑜𝑐𝑘 = 𝑙𝑜𝑔2 (𝑙𝑜𝑐𝑘 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) (5)

𝐵𝐼𝑇𝑘𝑒𝑦 = 128 − 𝐵𝐼𝑇𝑏𝑎𝑠𝑒 − 𝐵𝐼𝑇𝑟𝑎𝑛𝑔𝑒 − 𝐵𝐼𝑇𝑙𝑜𝑐𝑘 (6)
After compression, the 256-bit metadata is compressed into 128

bits and fits into a 128-bit shadow register file (SRF). Due to the
nature of the 64-bit memory alignment of the RV64. The compressed
128 bits of metadata is split into upper and lower sections, and each
section contains 64 bits. Therefore, our design’s metadata layout for
the general-purpose application uses 35 bits for the base and 29 bits
for the range as the lower section of the compressed metadata. The
lock field is 20 bits, and the key field is 44 bits as the upper section
of the compressed metadata. The calculation of the bit width for
each compressed metadata field is shown in Eq. 3-6.

The compression and decompression of the metadata are done
in hardware. The bit width for each metadata is set within a 24-
bit CSR at the beginning of the program. The bndrs instruction
will compress the 128 bits base and bound metadata into 64 bits
compressed spatial metadata and will bind it into the SRF. The
bndrt instruction will do the temporal part of compression to the
metadata and will bind to SRF. The sbdl instruction will store the
lower 64-bit SRF to the lower shadow memory and the sbdu to the
upper store. For metadata load, there are two sets of loading from
the S.Mem. The lbdls and lbdus will load the metadata from S.Mem
directly to the SRF without decompression, benefiting memory
transfer functions such as memcpy(). The metadata of a pointer can
be copied from SRF to SRF without passing through GPRF, thus
avoiding register spilling.

3.4 Compiler Instrumentation
The compiler is based on LLVM with the RISC-V backend. The
pointer analysis is augmented from SBCETS instrumentation to
support RISC-V. The compiler compiles the source code into an
intermediate representation (IR). Then, the pointer analysis gener-
ates the metadata depending on whether the pointer is statically
or dynamically allocated. The base and the bound metadata can
be set at initialization if a pointer is statically allocated. The tem-
poral metadata, key and lock will be generated with instrumented
runtime functions to find the available lock_location in shadow
memory then assigns a unique key to the pointer. If the pointer is
dynamically allocated, the metadata information can be foundwhen
memory allocation functions, such as malloc(), are called. The mem-
ory allocation functions are wrapped with wrapper functions. The
metadata are created and bound to the pointer in the wrapper func-
tion. When a pointer is freed, the key stored in the lock_location
will be set to zero. Therefore, any previous pointer with the same
lock_location will be invalidated. The lock_location will be free to
use in the future. However, the new allocation will have a different
unique key that prevents access from invalid pointers.

In shadow trie design, the lock_location memory resides in user
memory (heap). However, if the number of allocations does not
exceed the code size of the program times two, then we can map

Decode Execute Memory

GPRF

ptr

base range key lock

+
SCU

SPATIAL
VIOLATION

Keybuffer
lock key

SMAC

CSR
sm.offset

TCU

TEMPORAL
VIOLATION

=

DECOMP

ex_ctrl.mem
0

COMP

Writeback

SRF

1
0

ID/EX EX/MEM MEM/WB

Metadata Pipeline

metadata RS1
metadata RS2

dm
em

.req.addr

[U|S|L]
mem

imm

dm
em

.req.data

[G|S]RF

bndr $rd, $rs1, $rs2
lbd $rd, imm($rs1)
sbd $rs2 imm($rs1)

bndr $ptr, $base, $bound

sbd $rs2.brs, imm($ptr)
lbd $rd, imm($ptr)
lbds $rd.brs, imm($ptr)

ld.b $rd, imm($ptr)

tchk $key, imm($lock)

[T|S]comp

dm
em

.resp.data

DCache

CSR
meta.field

key from
lock_location

key from
keybuffer

RS2

mem_ctrl.mem

pointer’s
key

Figure 3: Overview of the hardware pipeline and memory
security modules.

the lock_location to the beginning of the shadow memory. The
technique is valid because the beginning of the shadow memory
is correlated with the program’s .text section, which is plain text
without pointers (initialized and uninitialized const pointers reside
in .bss and .data). Therefore, this technique can save user memory
and applies to all the embedded workloads in MiBench and Olden
benchmarks. SPEC benchmarks require more lock_locations than
embedded workloads. Thus, the lock_locations are pre-allocated in
the heap memory.

3.5 HWST128 Hardware Design
The hardware design of HWST128 is based on SHORE [7]. SHORE
is a 5-stage pipeline in-order spatial memory safety accelerator
based on the Rocket Chip with 128-bit SRF. HWST128 inherited
the pipeline from SHORE, then extended the instruction set to
support temporal safety. However, the original SHORE architecture
does not handle temporal metadata in hardware. Therefore, we
augmented the SHORE pipeline to support metadata compression
and decompression to fit the temporal metadata into the SHORE
pipeline.

Fig. 3 illustrates the pipeline modification of HWST128 from
SHORE. The metadata is now compressed before writing to the SRF
in the writeback stage. The compression bit width for eachmetadata
field is set in the HWST128 CSRs. The compression module (COMP)
and decompress module (DECOMP) will compress and decompress
the metadata accordingly. The shadow memory address calculator
(SMAC) will calculate the target address to shadow memory using
the pointer’s container address and the offset set in the HWST128
CSRs when loading or storing the metadata. The spatial boundary
check can be performed at the execution stage when the target
address of the bounded load/store instruction is calculated. First,
the lower section of the SRF will be decompressed into base and
bound values. Then, sent into the spatial check unit (SCU) with
the target address. If the target address is out-of-bound, a spatial
violation trap will be evoked.

The temporal check requires performing a load to fetch the
key in lock_location before comparing it to the key held by the
pointer in SRF. Hence, the temporal check cannot be merged with
the load/store instruction as the spatial check has two memory
accesses involved in a single instruction. A keybuffer is introduced
to accelerate the access speed of the key in the lock. The keybuffer
will keep a record of the most recent key loaded from the lock. The
lock will be compared with the pointer’s lock when the temporal
check instruction (tchk) is executed. If the lock is identical, the

712

HWST128: Complete Memory Safety Accelerator on RISC-V with Metadata Compression DAC ’22, July 10–14, 2022, San Francisco, CA, USA

0%

200%

400%

600%

800%

1000%

math FFT string CRC32 bitcounts dijkstra adpcm susan sha tsp power bh em3d health mst perimeter bisort treeadd milc sphinx3 sjeng gobmk bzip2 hmmer lbm Geo. mean

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d SBCETS HWST128 HWST128_tchk1040% 1754% 2734% 2996%

MiBench Olden SPEC

Figure 4: Performance overhead of MiBench, Olden and SPEC2006

key in the keybuffer will be used instead of the key from memory.
The bypass of loading lock_location can be done by modifying the
valid signal in the DCache module of the SHORE. The keybuffer
will be cleared whenever a pointer has been freed to ensure the
keybuffer will always hold the latest temporal metadata. In the end,
the key from the lock and the key from the pointer’s SRF will be
sent to the temporal check unit (TCU) to be compared. If the key is
mismatched, a temporal violation trap will be evoked to the kernel.

4 EXPERIMENTAL SETUP
The hardware platform is based on the Rocket Chip project [17]
from the RISC-V foundation. The HWST128 RISC-V processor
(RV64GC) is compiled from CHISEL into Verilog, then synthesized
with Xilinx Vivado 2017. The FPGA target is the Xilinx Zynq Ul-
traScale+ MPSoC ZCU102 FPGA board. The HWST128 compiler is
based on LLVM 8.0 with our ISA extended RISC-V.

SPEC CPU2006 [19] is used as generic benchmarks. MiBench and
Olden as the embedded benchmarks for performance evaluation.
First, the sources of the programs are compiled into executableswith
the spatial and temporal memory safety instrumentation. Then, the
executables are executed on the ZCU102 FPGA. The cycle count is
gathered by enabling the proxy kernel’s “-s” flag to report the total
number of cycles of each execution. All performance benchmarks
are compiled and linked without compiler optimization.

The memory safety test cases are from the NIST Juliet suite [20]
for security coverage evaluation. There are 7074 spatial related cases
and 1292 related temporal cases. The spatial attack subcategories are
stack-based buffer overflow (CWE121), heap-based buffer overflow
(CWE122), buffer underwrite (CWE124), buffer overread (CWE126),
and buffer underread (CWE127). The temporal attack subcategories
are double-free (CWE415), use-after-free (CWE416), null pointer
dereference (CWE476), null dereference from return (CWE690),
and free pointer not-at-start-of-the-pointer (CWE761). The security
workload is run on the RISC-V instruction set simulator (SPIKE) [21].
The SPIKE simulator is augmented with the HWST128 security
operation hardware and metadata compression.

5 RESULT AND DISCUSSION
Performance is measured using cycle count for each workload
running on the RISC-V FPGA platform. The performance over-
head (perf.oh) is used to observe the impact of the memory safety
algorithm. The calculation of the perf.oh is shown in the Eq. 7.
The perf.oh(%) is the performance overhead in percentage. The
instrumentedcycle and baselinecycle are the cycle count of program
with and without security operation instrumentation. Therefore,

𝑝𝑒𝑟 𝑓 .𝑜ℎ(%) = (
𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑒𝑑𝑐𝑦𝑐𝑙𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐𝑦𝑐𝑙𝑒
− 1)𝑥100. (7)

5.1 Performance overhead
Fig. 4 shows the perf.oh of the MiBench/Olden/SPEC benchmarks
on three different memory safety algorithms running on the RISC-V

0

2

4

6

8

lbm milc gobmk sjeng bzip2 hmmer Geo.mean

Sp
ee

d
up

 fa
ct

or

BOGO WDL (narrow)
WDL (wide) HWST128 (this work)

Figure 5: Speedup factor comparison between hardware ac-
celeration methods

FPGA platform. The SBCETS is the perf.oh of the SoftboundCETS,
a pure software solution to enforce spatial and temporal mem-
ory safety. The HWST128_tchk is the perf.oh with the hardware
instruction tchk, which utilizes the keybuffer to perform the tem-
poral checking. The HWST128 is similar to the spatial part of the
HWST128_tchk but without the tchk instruction support. There-
fore, HWST128 uses the software method to load the key from the
lock_location to perform temporal security operations. The right-
most bar is the geometric mean (mean) of all the perf.oh. The pure
software memory safety algorithm performs poorly in the RISC-V
platform. The mean of the perf.oh using SBCETS is around 441.45%.
When the metadata propagation is realized in HWST128 perf.oh
reduces to 152.91%. The perf.oh can be further reduced to 94.89%
with tchk instruction to perform the temporal key check with the
assistance of the keybuffer.

Performance of three spatial and temporal memory safety ac-
celeration works, BOGO [14], the WatchdogLite (WDL) [12] and
HWST128 (this work) are compared together. However, these three
works are implemented on different architectures. Therefore, a di-
rect comparison of the perf.oh is meaningless. Thus, we use the
speedup factor to compare different architecture. Speedup factor
is calculated using the speed (clock cycles) of the pure software
memory safety SBCETS [5, 6] on each architecture as the dividend.
The cycles of the hardware acceleration technique as the divisor to
calculate how much improvement is seen by each technique. The
calculation for speedup is shown in Eq. 8. The SoftboundCETScycle
and Hardware_Accelerationcycle are the cycle count of program
instrumented with SBCETS and hardware acceleration methods.
Therefore,

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 (×) =
𝑆𝑜 𝑓 𝑡𝑏𝑜𝑢𝑛𝑑𝐶𝐸𝑇𝑆𝑐𝑦𝑐𝑙𝑒

𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒_𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑦𝑐𝑙𝑒
. (8)

The speedup factor of each technique is shown in Fig. 5. BOGO
is based on IntelMPX [13] spatial protection acceleration with ad-
ditional shadow trie support and sets the bound to zero when a
pointer is freed, thus achieving partial temporal protection. The
mean of IntelMPX speedup is around 1.52× faster than the baseline
SBCETS in the prior study [22]. However, the additional tempo-
ral operations in BOGO impact the performance and reduce the
speedup to 1.31×. WDL has two modes. The narrow mode uses
the scalar operation to handle the metadata propagation, while the
wide mode uses the AVX instruction to accelerate the metadata op-
erations in vectors. WatchdogLite performs better than IntelMPX,

713

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Hsu-Kang Dow, Tuo Li, and Sri Parameswaran

0%

20%

40%

60%

80%

GCC SBCETS ASAN HWST128

Se
cu

rit
y

co
ve

ra
ge

CWE121 CWE122 CWE124 CWE126 CWE127
CWE415 CWE416 CWE476 CWE690 CWE761

Figure 6: Security coverage of GCC, AddressSanitizer (ASAN),
SoftboundCETS (SBCETS), andHWST128 onNIST Juliet suite

especially in SPEC bzip2 and hmmer. The mean speedup of WDL
narrow and wide are 1.58× and 1.64×, respectively. Similar to the
finding in BOGO, only six out of nineteen SPEC CPU2006 work-
loads instrumented with SBCETS can finish on x86 without error.
The lbm in SPEC cannot finish on our RISC-V FPGA platform with
SBCETS due to insufficient onboard memory.

In our experiments, the speedup of bzip and hmmer are high
on the RISC-V platform. We run tests with CETS [6] instrumen-
tation only (software temporal safety part of the SoftboundCETS)
and found out that bzip, hmmer have reduced performance when
compared to other SPEC workloads. However, the performance
reduction in our temporal protection instrumentation with hard-
ware acceleration is much less. The speedup in HWST128 of bzip
and hmmer are 7.98× and 7.78×, respectively, when compared to
SBCETS. The bzip and hmmer cases show how the hardware accel-
eration for temporal checking in our design can help to speedup
the program. On average over number of benchmarks, HWST128
has a mean speedup of 3.74×.

5.2 Security coverage
For the security coverage, four protection/detection algorithms, in-
cluding AddressSanitizer (ASAN) [8], SBCETS [5, 6], and HWST128
(this work) are evaluated with NIST Juliet suite on their published
architecture. All test cases are compiled without optimization (-
O0) as compiler optimization might remove attack vectors in Juliet
test cases. The memory violation detection is done by parsing the
output of the test case to observe if any violation is detected. The
security coverage will be the total detected cases divided by the
total number of Juliet cases (8366 cases). ASAN does not strictly
enforce memory safety. However, ASAN can be used to detect vari-
ous spatial and temporal violations, and therefore is listed in the
evaluation. The default GCC-8.2.0-x86 is also included as a baseline
reference for generic compiler protection.

Fig. 6 shows the coverage rate in Juliet test cases. The SBCETS
covers 5395 cases (64.49%), ASAN covers 4859 cases (58.08%), HWST
covers 5323 cases (63.63%), and GCC covers 937 cases (11.20%).
All memory violation detection algorithms can effectively pick
up more than half of the memory violations in the tests. When
comparing HWST128 to SBCETS, HWST128 has fewer cases cov-
erage in CWE122 Heap_Based_Buffer_Overflow, which leads to
0.86% less coverage than SBCETS. When comparing HWST128 to
ASAN, HWST128 is slightly better. The major difference comes
from CWE690 NULL_Deref_From_Return, where ASAN cannot
detect any of the cases in this category.

5.3 Hardware cost
The hardware cost of HWST128 compared to the baseline Rocket
Chip uses 1536more LUTs (+4.11%) and 112 FFs (+0.66%). In addition,
the timing of the critical path increased from 5.26ns to 6.45ns. The

additional latency is caused by the bypass network (forwarding) in
the metadata propagation.

6 CONCLUSION
In this paper, we present HWST128, a hardware/software co-design
method to accelerate spatial and temporal safety on RISC-V. A
novel, configurable metadata compression technique to fit the ad-
ditional temporal metadata into the shadow register file is shown,
leading to a minimal increase of hardware cost of 4.11% in LUTs
and 0.06% in FFs. The compressed metadata reduces the perfor-
mance impact on in-pipeline and through memory propagation.
Combined with a keybuffer, HWST128 achieved 3.74× speedup
over the software solution of SBCETS. HWST128 provides com-
parable spatial and temporal safety coverage in Juliet test suite as
SBCETS and ASAN. HWST128 is the first complete solution for
memory safety on RISC-V, providing a high-performance, low-cost,
and FPGA-ready platform for memory security.

ACKNOWLEDGEMENT
This research was supported by the Australian Research Coun-
cil’s Discovery Projects funding scheme (project DP190103916).
We would like to thank Defence Science and Technology Group
Australia for their support.

REFERENCES
[1] Szekeres et al., “Sok: Eternal war in memory,” in 2013 IEEE Symposium on Security

and Privacy, pp. 48–62, IEEE, 2013.
[2] MITRE, “Cwe top 25 most dangerous software errors,” 2021.
[3] G. C. Necula, McPeak, et al., “Ccured: Type-safe retrofitting of legacy code,” in

ACM SIGPLAN Notices, vol. 37, pp. 128–139, ACM, 2002.
[4] J. Devietti et al., “Hardbound: architectural support for spatial safety of the c

programming language,” in ACM SIGARCH Computer Architecture News, vol. 36,
pp. 103–114, ACM, 2008.

[5] S. Nagarakatte, Zhao, et al., “Softbound: Highly compatible and complete spatial
memory safety for c,” ACM Sigplan Notices, vol. 44, no. 6, pp. 245–258, 2009.

[6] S. Nagarakatte, Zhao, et al., “Cets: compiler enforced temporal safety for c,” in
ACM Sigplan Notices, vol. 45, pp. 31–40, ACM, 2010.

[7] H. Dow, T. Li, W. Miles, and S. Parameswaran, “SHORE: hardware/software
method for memory safety acceleration on RISC-V,” in Design Automation Con-
ference, 2021, pp. 289–294, IEEE, 2021.

[8] K. Serebryany, D. Bruening, et al., “Addresssanitizer: A fast address sanity checker,”
in USENIX’12, p. 28, USENIX Association, 2012.

[9] C. Kil, Jun, et al., “Address space layout permutation (aslp): Towards fine-grained
randomization of commodity software,” in ACSAC’06, pp. 339–348, IEEE, 2006.

[10] ARM, “Arm memory tagging extension whitepape,” 2019.
[11] Woodruff et al., “The cheri capability model: Revisiting risc in an age of risk,” in

ISCA’14, pp. 457–468, IEEE, 2014.
[12] S. Nagarakatte et al., “Watchdoglite: Hardware-accelerated compiler-based

pointer checking,” in Proc. CGO, 2014.
[13] R. Ramakesavan, D. Zimmerman, and P. Singaravelu, “Intel memory protection

extensions (intel mpx) enabling guide,” 2015.
[14] T. Zhang, D. Lee, and C. Jung, “Bogo: Buy spatial memory safety, get temporal

memory safety (almost) free,” in ASPLOS’19, pp. 631–644, 2019.
[15] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong program

analysis transformation,” in Proc. CGO, 2004.
[16] S. Das, Unnithan, et al., “Shakti-ms: a risc-v processor for memory safety in c,” in

Proc. LCTES, pp. 19–32, ACM, 2019.
[17] K. Asanovic et al., “The rocket chip generator,” EECS, UCB, Tech. Rep. UCB/EECS-

2016-17, 2016.
[18] C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi, “Tricheck:

Memory model verification at the trisection of software, hardware, and isa,” ACM
SIGPLAN Notices, vol. 52, no. 4, pp. 119–133, 2017.

[19] J. L. Henning, “SPECCPU2006 benchmark descriptions,” SIGARCHComput. Archit.
News, vol. 34, p. 1–17, Sept. 2006.

[20] T. Boland and P. E. Black, “Juliet 1. 1 c/c++ and java test suite,” Computer, vol. 45,
no. 10, pp. 88–90, 2012.

[21] Waterman et al., “Spike RISC-V ISA simulator,” 2016.
[22] Oleksenko et al., “Intel mpx explained: A cross-layer analysis of the intel mpx

system stack,” POMACS, vol. 2, no. 2, p. 28, 2018.

714

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

