
FaSe: Fast Selective Flushing to Mitigate Contention-based Cache
Timing Attacks

Tuo Li
University of New South Wales

Sydney, Australia
tuoli@unsw.edu.au

Sri Parameswaran
University of New South Wales

Sydney, Australia
sri.parameswaran@unsw.edu.au

ABSTRACT

Caches are widely used to improve performance in modern pro-
cessors. By carefully evicting cache lines and identifying cache
hit/miss time, contention-based cache timing channel attacks can
be orchestrated to leak information from the victim process. Ex-
isting hardware countermeasures explored cache partitioning and
randomization, are either costly, not applicable for the L1 data
cache, or are vulnerable to sophisticated attacks. Countermeasures
using cache flush exist but are slow since all cache lines have to be
evacuated during a cache flush. In this paper, we propose for the
first time a hardware/software flush-based countermeasure, called
fast selective flushing (FaSe). By utilizing an ISA extension and
cache modification, FaSe selectively flushes cache lines and provides
a mitigation method with a similar effect to methods using naive
flush. FaSe is implemented on RISC-V Rocket Chip and evaluated
on Xilinx FPGA running user programs and the Linux OS. Our
experiments show that FaSe reduces time overhead by 36% for user
programs and 42% for the OS compared to the methods with naive
flushing, with less than 1% hardware overhead. Our security test
shows FaSe can mitigate target cache timing attacks.

1 INTRODUCTION

Cache timing side channel [1] has been a key component in recent
lethal security attacks, such as Spectre/Meltdown, on contemporary
commodity processors. Contention-based cache timing attack, e.g.,
Prime+Probe [2], is an important type of attack exploiting cache
timing channels. In such an attack, an adversary utilizes carefully
designed cache evictions, to learn the cache access pattern of the
victim process.

Fig. 1 demonstrates an example Prime+Probe attack, which has
three stages. In Stage 1 (prime), the spy process places its own data
(a to p) in all the cache lines (in light grey). In Stage 2, the spy
process gives up the processor core and waits for the victim process
to execute its task on this core. During this stage, any cache usage
on a cache line from the victim will result in contention at the cor-
responding cache line, and hence, will have attacker’s prime data
at these cache lines replaced and moved out of cache to the next
level of cache-memory hierarchy. For example, in Fig. 1, victim’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530491

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

w0
s0 a

e

i

m

A

f

j

n

c

g

k

C

d

h

B

p

Prime ProbeVictim

w1 w2 w3

s1

s2

s3

w0 w1 w2 w3
s0

s1

s2

s3

Figure 1: Abstract view of a Prime+Probe attack. The blocks

in dark grey represent the cache lines utilized by victim. si:
Cache Set i. wi: Cache Way i.

data A, B, and C, cause attacker’s data b (at s0,w1), l (at s2,w3), and
o (s3,w2) replaced. In Stage 3 (probe), the spy process is switched
back (simultaneously victim process is preempted from this core)
to this core, and the spy proceeds to pinpoint the replaced cache
lines, by loading or storing the prime data again. By measuring the
time taken for accessing the prime data, the attacker can infer if
this data access is a cache hit or miss, and hence, leak the infor-
mation belonging to the victim process. The knowledge of such
access patterns can leak critical information, e.g., secret key value
in AES [3], even across sandbox in web browsers [1].

L1 data cache is a critical microarchitecture inmodern processors,
which must be protected from cache timing attacks [4]. Modify-
ing cache architecture for partitioning [5] and randomized cache
mapping [6] is costly for local private caches and is vulnerable to so-
phisticated exploits [7]. State-of-the-art software-based mitigation
methods [8, 9, 4] mitigate timing attacks on private L1/L2 caches
by performing cache flush upon preemption, process switch, and
syscalls.1 Cache flush is effective because it guarantees that the
entire cache will be cleaned before the processor is switched from
one process to another. After a cache flush, the hit/miss time differ-
ence can no longer be observed by the attacker’s process, which
enforces that the processes are isolated temporally. While cache
flush is effective in protecting against cache timing attacks, it sig-
nificantly increases the cache miss rates and cold cache effects, key
factors affecting program performance [10]. Built upon cache flush,
existing mitigation methods incur substantial program slowdown
(more than 19% throughput overhead in Nginx in [9]). Moreover,
cache flush is likely to incur greater performance overheads in
future processors. In fact, the performance cores (named Firestorm)
in the recently released Apple M1 chip, contain L1 data caches as
large as 128 KB.2

In this paper, we propose a novel hardware/software method
called fast selective flushing (FaSe), for countering contention-
based cache timing attacks in L1 data cache. FaSe collectively lever-
ages a customized cache microarchitecture and a specialized cache

1https://lwn.net/Articles/768418/
2https://en.wikipedia.org/wiki/Apple_M1

541

https://doi.org/10.1145/3489517.3530491
https://lwn.net/Articles/768418/
https://en.wikipedia.org/wiki/Apple_M1
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530491&domain=pdf&date_stamp=2022-08-23

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Tuo Li and Sri Parameswaran

Spy Victim Kernel
probe = missflush

(a) Naive flush

lC

lC

lC

lC

Spy Victim Kernel

lC

lC

probe = missflush

(b) Line level selective flush

lC

lS

lC

lS

Victim Kernel
flush

| | > 0𝐿𝑆

(c) Cache level selective flush

Flush Mechanism Cost Save

Naive 4 n/a
LLSF 2 0.5
CLSF (|𝐿𝑆 | ≥ 1) 2 0.5
CLSF (|𝐿𝑆 | = 0) 0 1.0

(d) Flush cost estimation

Figure 2: Brief illustration of FaSe’s key idea.

flush instruction to create two new flush mechanisms, which signif-
icantly reduce the flush-based mitigation time cost. First, line level
selective flush (LLSF) mechanism is proposed, which allows flushing
of a subset of the cache lines, instead of all cache lines in the cache,
while guaranteeing that the cache hit/miss time difference cannot
be observed by the attacker. Second, cache level selective flush (CLSF)
mechanism is proposed, which enables the cache flush to be guided
(by user using a simple programming interface) and to perform
“strategically” when necessary (when user-defined critical data is
in cache), rather than always.

FaSe’s hardware design extends the base processor architecture
to support a specialized new cache flush instruction (scflush),
as well as extends the L1 data cache with minimum additional
state bits and control logic to perform both the LLSF and CLSF
mechanisms. The software support for FaSe only takes a few lines
of assembly code to: 1) integrate the specialized flush instruction
in the software stack; and, 2) instrument program source code to
define the critical data access. FaSe is implemented and evaluated
on a RISC-V ISA processor, called the Rocket Core with Rocket Chip
system-on-chip (SoC), on a Xilinx ZYNQ Ultrascale+ FPGA. The
microbenchmark and OS evaluation results show that FaSe reduces
36% (user programs) and 42% (OS context switch latency) time
overhead for flush-based mitigation on average. FPGA synthesis
result shows that the hardware overhead of FaSe is negligible (less
than 1% in tile with FPU excluded). The contribution of this research
is summarized as follows.

• To the best of our knowledge, FaSe is the first selective flush-
based mitigation for contention-based cache channel.

• A RISC-V processor with FaSe hardware and software modi-
fications are implemented and validated on FPGA running
user programs and Linux operating system.

• A contention-based cache timing attack evaluation, using
Prime+Probe, is performed on the FaSe processor.

2 RELATEDWORK

Hardware-basedmitigationmethods [5, 11] modify cache architec-
ture by partitioning cache lines among processes, to counter cache
timing channels. These partitioning-based methods result in signif-
icant cache under-utilization, and hence, are not practical for local
private caches, which are small and time-shared. Other hardware-
based methods [12, 6, 13] explore using randomized memory-to-
cache mapping in cache hardware. These randomization-based
caches typically incur substantial hardware modifications, such
as adding a mapping table (1/8 to 1x of cache size) [12, 6], index
table [13], and cryptography circuitry [6, 13]. In addition, software
modifications are required in OS, including grouping tasks [6], ex-
tending page table [13], and additional kernel/user communications
for passing unique process identification (PID) [13]. Randomized
caches are prone to be breached if the attacker is provided with

sufficient trials [7]. Software-based spatial partitioning [14, 15,
16] are used to mitigate timing attacks on shared caches, such as
Last-level caches (LLC). For private L1/L2 caches, due to the high
cost of cache partitioning [4], software-based methods [8, 9, 4] are
proposed to flush caches, when the processor core is about to run
another user’s thread or kernel thread. These methods typically re-
quire considerable software modification of the OS kernel (e.g., 1.4K
LoC in [8]). Compound flush instructions are used in [17, 18,
19] to flush multiple on-core microarchitectural states, including L1
caches, TLB, branch prediction unit. This flush is a superset of naive
cache flush, which flushes every cache line. These flush instructions
are built on RISC-V processor variants, whose cache architectures
and coherence protocols are different from the processor (Rocket
Chip) used in this paper. For example, in [18], L1 data cache uses
write-through policy, which does not require write-back during
cache flush. Rocket Chip has a write-back L1 cache, which is more
popular in modern processors. Compared to prior arts, FaSe is the
first selective flush-based method to mitigate cache timing attacks.
Such selective flushing reduces overheads significantly.

3 FASE SELECTIVE FLUSH

Threat Model. In this paper, contention-based, on-core L1 data
cache timing attacks are targeted, which have been investigated in
prior arts [6, 8, 9, 4]. The adversary is assumed to have user rights
and mounts the spy process running on the same processor core.
In this paper, Prime+Probe is used as the reference contention-
based cache timing attack. Other levels of cache hierarchy are out
of scope and assumed to be protected from cache timing attacks
using existing methods discussed in Section 2.

Nominal flush-based mitigation system model. A system
with flush-based mitigation executes cache flush in between user
processes at OS kernel [4] or enclave exit [9] (i.e., flush point). Fig. 2
briefly illustrates existing and our proposals in comparison. As
shown in Fig. 2a, in a flush-based system, the CPU events of one
CPU core can be viewed as interleaved cache flush events and com-
pute/service events. Naive cache flush mechanism (Fig. 2a) flushes
all cache lines of the local private data caches. Such a naive mech-
anism can either be implemented in software (e.g., run dc␣cisw
instruction in for loop in ARMv8 ISA) or hardware (e.g., [17, 18]),
essentially in a for-loop, which traverses, invalidates, and cleans
all cache lines in the cache. After a flush event, all the following
memory accesses will be cache-miss and take a much longer time.

Our proposal 1: not every cache line requires a flush. In
contrast to the naive flushing, the first method proposed here (called
Line Level Selective Flush or LLSF), only flushes the cache lines that
were not updated in the current time slice. The intuition behind
this method is that the updated cache lines will not result in a hit
with the spy process, and thereby reducing the number of lines
being flushed (this significantly reduces the flushing time and the

542

FaSe: Fast Selective Flushing to Mitigate Contention-based Cache Timing Attacks DAC ’22, July 10–14, 2022, San Francisco, CA, USA

time overhead associated with flushing). Like naive flushing, this
method mitigates cache timing attacks and covert channels. As
shown in Fig. 2b, at one flush point, let the process executed before
this flush point be noted as current process 𝜏𝑐𝑢𝑟 (victim in Fig. 2b),
while the process executed after this flush point be noted as next
process 𝜏𝑛𝑥𝑡 (spy in Fig. 2b). Let’s denote the number of total cache
lines as a set 𝐿 and the number of dirty cache lines as 𝐿𝐷 (𝐿𝐷 ⊆ 𝐿).
There is a subset of cache lines 𝐿𝐶 (𝐿𝐶 ⊆ 𝐿𝐷), which have been
placed into the cache by 𝜏𝑐𝑢𝑟 . Flushing the complementary of these
cache lines, noted as 𝐿𝑋 = 𝐿𝐷 \ 𝐿𝐶 , is sufficient to let 𝜏𝑛𝑥𝑡 observe
cache miss at every cache line 𝑙 ∈ 𝐿. Therefore, 𝜏𝑐𝑢𝑟 and 𝜏𝑛𝑥𝑡 are
temporally isolated while fewer cache lines need to be flushed. A
decrease in flushed cache lines leads to the reduction of flush cost
and alleviates the cold cache penalty (elaborated later).

Our proposal 2: not every flush point needs a cache flush.

In the second proposed method, cache level selective flush (CLSF)
the program section that requires protection is instrumented (for
example with pragmas), and only if that part of the program brings
data into the cache, then the cache is flushed. The intuition behind
the second method is that there are many parts of the program
which do not require temporal isolation for countering cache tim-
ing attacks, and experience shows a program executes in multiple
OS time slices, and only some of these deal with protected data,
such as an encryption key. This method mitigates the cache timing
attacks, but will not fully counter cache covert channels, if the
covert channel is implemented using the program parts that are not
instrumented. Fig. 2c shows the brief idea of CLSF. Let us assume a
program only has limited parts (e.g., T-table look-up in AES [20]),
which are security-critical. We define the data accessed in security-
critical parts of a program as security-critical data. At one flush
point, if 𝜏𝑐𝑢𝑟 (victim in Fig. 2b) has not accessed any security-critical
data in any cache lines (noted as 𝐿𝑆), temporal isolation against
𝜏𝑛𝑥𝑡 at this point is unnecessary. Therefore, this cache flush can be
nullified to trade flush cost with acceptable security degradation.

Flush cost-saving analysis. The time cost of one cache flush
event at time 𝑡𝑖 is mainly determined by the number of dirty cache
lines 𝐿𝐷 (𝐿𝐷 ⊆ 𝐿) and the number of total cache lines 𝐿. This rela-
tion can be expressed as 𝑃𝑖 = 𝛼 · |𝐿𝑖

𝐷
|+𝛽 · |𝐿 | where the first term rep-

resents the time cost for invalidating and cleaning dirty cache lines,
and the second represents the time taken to visit every cache line
like a for-loop at flush. 𝛼 stands for the time penalty of invalidating
and cleaning one dirty cache line, which is mainly the time taken for
maintaining data coherency, such as write-back. 𝛽 denotes the time
taken for traversing one cache line. 𝛼 is order-of-magnitude larger
than 𝛽 . Flush cost is proportional to |𝐿𝐷 |. Moreover, cache flush
induces cold-cache penalty, equivalent to the “start-up effects” [10].
For a period of time, the total time cost of a flush-based system is∑
𝑖 𝑃𝑖 + 𝑃𝐶𝐶 , 𝑖 ∈ {1, 2, . . . , 𝑁 } where 𝑁 is the number of total flush

events and 𝑃𝐶𝐶 is the lump sum of time penalties from cold cache
effects. Fig. 2d shows a brief quantitative comparison (based on
flushed cache lines) between FaSe and naive flush-based mitigation,
corresponding to the scenarios in Fig. 2b and Fig. 2c. The flush
cost is estimated as cache lines flushed. With LLSF, flush cost can
be substantially reduced, if there are sizable 𝐿𝐶 cache lines that
can avoid flushing. In this example, two out of four cache lines are
saved from flushing, which leads to proportional amount of time
cost saving. With CLSF, if the condition meets, i.e., 𝐿𝑆 = ∅, the flush

FaSe State Bits
(1b per cache line)

@User Program Execution @Temporal Isolation Point (Flush Point)

D-Cache

FaSe CLSF Flag

CLSF Scope
(begin/end)

Cache Operation
(e.g., load/store)

From Core
(FaSe CSR) From Core

scflush
(flush instruction)

From Core

update
FaSe

Control
FaSe

Control

FaSe State Bits
(1b per cache line)

FaSe CLSF Flag

read
Data
Array

flush

To Memory

D-Cache

To Memory

Figure 3: FaSe system overview.

tag coherence FaSe

20 bits 2 bits 1 bit

0

NCL-1
... ...

Figure 4: FaSe cache’s tag array.

set flush counter

LC

EoC?

tag array look-up

check & reset
FaSe state bitsflush?

nullify flush

flush done
Y

N

flush line

N

Y

YN

line++

(a) Flush algorithm

Coherence FaSe Flush?

11 (M) 1 N (nullify)
11 (M) 0 Y
10 (E) 1 N (nullify)
10 (E) 0 Y
01 (S) 1 N (nullify)
01 (S) 0 Y
00 (I) 1 N
00 (I) 0 N

(b) LLSF flush decision

Figure 5: LLSF flush mechanism. EoC: end of cache lines.

can be nullified and leads to a complete save of flush cost at this
flush point.

4 FASE DESIGN: THE CASE FOR RISC-V

Fig. 3 shows the overview of FaSe design, which realizes both
LLSF and CLSF. FaSe design includes hardware modification to
L1 D-cache, a cache flush instruction (scflush - which is an ISA
extension), and a control/status register (CSR), denoted as csr.scf.
FaSe works in two phases, user program execution, and flush in-
struction execution. FaSe extends L1-D cache with 1) FaSe state bits,
2) one CLSF flag status bit, and 3) FaSe control. Fig. 4 depicts FaSe
cache modification with respect to the cache metadata (stored in
tag array) in the RISC-V Rocket core processor. FaSe adds one FaSe
state bit for each cache line. FaSe state bits are stored together with
other cache metadata, such as tag bits and coherence bits, which
are one-on-one mapped to cache lines. In a 4-way 64-set data cache,
the total number of FaSe state bits is 1 × 256. Bit value “1” means
this cache line has been accessed in the current process time slice
(since the last cache flush).

LLSF control mechanism has two parts, corresponding to FaSe’s
two phases. During user program execution, when CPU core ac-
cesses the L1 cache, using instructions such as load or store, FaSe
state bit is updated to “1”. This update is executed simultaneously
when coherence bits are updated for the corresponding cache line
by the native cache-control hardware. Fig. 5 illustrates LLSF algo-
rithm when flush instruction is executed. Fig. 5a shows a flowchart

543

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Tuo Li and Sri Parameswaran

//CLSF critical segment begin
asm volatile("csrwi scf, 1");
set_key(key, key_len, enc, ctx);
//CLSF critical segment end
asm volatile("csrwi scf, 0");

(a) Code snippet

clear
FaSe bits

LS
read CLSF

 flag
N

Y

nullify clear CLSF flag

do LLSF

(b) Flush algorithm

Figure 6: CLSF flush mechanism.

of the steps in cache flush. Fig. 5b depicts how LLSF decision is made
based on coherence bits (assuming RISC-V’s MESI-like coherence
protocol) and FaSe state bit of one cache line. In Fig. 5b, Row 2, 4,
and 6, are the cases where cache line flush is not necessary and
hence avoided. As shown in Fig. 5a, when the flushing instruction
is executed, LLSF control mechanism sets the flush counter (from
1 to number of cache lines) and performs the following steps for
each cache line : 1○ read FaSe state bit and coherence bits of the
current cache line from the tag array, using flush counter value as
the tag array index; 2○ check whether the coherence state of this
cache line determines that this cache line should be flushed, and
whether FaSe state bit (shown in Fig. 5b indicates this line flush is
unnecessary; 3○ reset FaSe state bit of current cache line; 4○ if FaSe
control determines that this cache line should be flushed (based on
Fig 5b), such as the situations in Row 3, 5, 7 in Fig. 5b, cache line
flush takes place, otherwise, this cache line flush is nullified; and, 5○
increment flush counter, and if the counter value reaches maximum
value (meaning last cache line has been processed), cache flush is
finished.

In addition to LLSF, FaSe CLSF further extends the CPU core
with FaSe CSR register (denoted as csr.scf) and L1-D cache with one
CLSF flag status bit. FaSe CSR is one-bit wide and programmable
by the user. FaSe csr.scf allows users to mark the critical segment in
the program code. When csr.scf’s value is “1”, the memory-related
instructions during this time are considered critical and are pro-
tected. When csr.scf’s value is “0”, instructions executed are no
longer considered critical. Fig. 6a depicts an example code snippet
in AES program where CLSF critical segment is marked (assuming
RISC-V ISA). In this code snippet, the user adds two additional lines
of assembly code (inline assembly in C) to put the set_key function
into CLSF critical segment. Before calling the set_key function,
csr.scf is written with “1” by csrwi instruction (In RISC-V ISA, one
CSR register can be written using CSR access instructions, such
as csrwi and csrw instructions). After returning from the set_key
function, csr.scf is reset to “0” by csrwi instruction. In L1 D-cache,
CLSF flag status bit is added to indicate if any cache line has been
used in the user-defined CLSF critical segment in current process
time slice since last cache flush.

CLSF control mechanism has two parts with respect to user
program execution and flush instruction execution. During user
program execution, CLSF looks at the signal value from FaSe CSR
csr.scf, when cache operation is issued from CPU core to L1 D-
cache. If csr.scf’s value is “0”, the current cache operation is treated
as non-critical. In this case, CLSF control does not do anything. If
csr.scf’s value is “1”, the current cache operation is treated as critical.
In this case, if any cache line’s coherence state bits are updated
due to this cache access, the CLSF flag status bit is asserted to “1”.
Interruptions and exceptions could occur during a CLSF critical
segment. To handle such a situation, when the CPU switches from
the current process to kernel space, csr.scf is saved as context and
reset. When this process is switched back, csr.scf is also restored

as a part of the process context. This procedure incurs negligible
additional code lines (less than 10 lines of assembly). As shown in
Fig. 6b, when scflush is executed, CLSF control mechanism has
the following steps: 1○ read and check the CLSF flag value; 2○ If
CLSF flag value is “1”, CLSF control nullifies this cache flush and
clears FaSe state bits. If CLSF flag value is “0”, like LLSF, CLSF
can examine FaSe state bits and selectively flushes the cache lines,
which are necessary; and, 3○ At last, clear the CLSF flag.

5 EXPERIMENT AND RESULTS

FaSe is implemented on the RISC-V Rocket Core processor. Rocket
Core is part of the Rocket Chip SoC generator [21]. In our experi-
ment, we use the 64-bit generic RISC-V ISA, RV64GC. The L1 data
cache is a 32-KB 8-way set-associative cache containing 64-byte
cache blocks. We used an FPGA build3 of Rocket Chip and ported
this build to Xilinx Ultrascale+ ZCU102 FPGA board. The main
memory is a 4-GB DDR4 SODIMM manufactured by Micron fitted
on to the ZCU102. The FPGA synthesis tool used for synthesis is
Vivado 2017.1. Our experiment mainly evaluates FaSe’s LLSF, given
CLSF requires user and domain knowledge to set the protection
scope. To showcase the efficacy of FaSe’s CLSF, we performed a
case study on AES encryption. We compare our system against
two reference systems in our experiments: 1) the original RV64GC
Rocket Core, which is the baseline (without mitigation); and, 2) the
RV64GC Rocket Core augmented with hardware-supported naive
cache flush (cache-flush with hardware for-loop similar to [17, 18]),4
which is denoted as the naive method or naive system.

In Section 5.1, to observe how much FaSe can reduce the OS
overhead, we use context switch latency test, lat_ctx, in LMBench
3.0 [22] to evaluate overhead caused by FaSe and naive systems. We
modified the Linux kernel 4.20 by adding a cache flush instruction
in the context switch routine for deploying FaSe and the naive sys-
tems. The baseline processor runs the native Linux kernel without
modification. Naive and FaSe systems run the modified Linux ker-
nels. In this experiment, FaSe enables LLSF. lat_ctx test runs with
varied process sizes (by default from 0 to 64 KB). When process size
is 0 KB, the process does nothing except pass the token on to the
next process. Non-zero process size means that the process does
some work before passing on the token. lat_ctx test considers a
range of process numbers (by default from 2 to 96) and has context
switch latency measured for each process number. Context switch
latency is the time needed to save the state of one process and re-
store the state of another process. In Section 5.2, we evaluated the
user program performance using programs from MiBench bench-
mark suite [23]. We use RISC-V proxy kernel (riscv-pk), a basic
application execution environment, which directly supports mea-
suring cycle and instruction count. We modified riscv-pk to adopt
the FaSe method. In each program, temporal isolation takes place at
user/kernel switch, which is for syscalls and exception/interruption
handling. In Section 5.4, for security evaluation, we created a
Prime+Probe cache timing attack based on the codebase from [24].
We implemented the victim as a function in kernel space within
riscv-pk. The attacker process prepares the attack and uses a special
syscall to switch to the victim process. After the victim finishes

3https://github.com/ucb-bar/fpga-zynq
4Similar to CFLUSH.D.L1 https://github.com/chipsalliance/rocket-chip/pull/1712

544

https://github.com/ucb-bar/fpga-zynq
https://github.com/chipsalliance/rocket-chip/pull/1712

FaSe: Fast Selective Flushing to Mitigate Contention-based Cache Timing Attacks DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Table 1: Context switch latency (microseconds) across three

systems, process sizes (SZ in kilobytes), process numbers (P·)
System SZ P2 P4 P8 P16 P24 P32 P64 P96

Baseline

0 40.5 40.3 69.6 86.4 101.3 102.3 108.3 109.5
4 51.0 88.0 119.6 139.3 138.0 142.8 144.2 144.4
8 65.5 131.5 155.0 164.5 168.3 172.8 175.7 174.3
16 140.5 202.3 213.3 225.8 228.9 230.2 228.1 229.4
32 197.5 222.8 232.1 251.2 247.2 251.1 248.6 247.5
64 150.0 177.0 194.8 191.7 185.8 188.8 186.5 186.4

Naive

0 154.5 154.3 152.5 161.6 168.0 170.5 179.4 177.4
4 182.5 180.0 178.0 189.8 193.4 198.3 202.2 200.7
8 211.0 212.0 206.1 222.4 231.4 235.0 232.8 232.3
16 256.0 253.8 257.3 270.5 276.3 287.1 282.8 280.9
32 276.0 274.0 275.9 307.3 309.3 309.8 308.9 307.1
64 183.0 205.0 235.4 234.7 228.7 229.2 227.4 229.2

FaSe

0 122.5 122.8 121.6 123.9 130.5 134.9 140.4 140.5
4 161.0 160.3 155.0 163.7 167.9 172.4 175.4 172.5
8 186.5 187.0 186.9 196.1 200.4 208.6 207.6 208.3
16 212.5 218.0 216.1 234.2 240.1 241.4 242.0 241.7
32 247.0 251.5 257.5 273.1 270.7 275.6 272.8 271.7
64 171.0 195.3 223.8 214.7 210.3 212.2 211.6 210.2

0

50

100

150

0 4 8 16 32 64

O
ve

rh
ea

d
(%

)

Process Size (KB)

Naive FASE

Figure 7: lat_ctx overhead vs. process sizes.

the task in kernel space, the attacker process switches back and
probes the cache. In comparison to mounting Prime+Probe attack
on OS, this setup leads to a faster Prime+Probe attack, since the
code executed between victim and spy is much less.

5.1 Linux Kernel Results

Table 1 shows the context switch latency of the baseline, naive, and
FaSe systems regarding different process sizes and numbers. Col-
umn 1 and Column 2 shows the system names and program sizes in
KB. Columns 3 to 8 are the context switch latency in microseconds.
Overall, smaller process sizes lead to lower context switch latency,
since cache footprint is affected by the process size. The lowest
context switch latency is witnessed when the baseline system is
used with 0 KB process size, because it does not enforce flush of the
cache and cache footprint is minimum. The highest context switch
latency is found when the naive system is used with 32 KB process
size, because full cache flush is enforced, and the cache footprint is
maximum in this case. Process size of 64 KB is larger than cache size
(32 KB) and shows smaller context switch time. This phenomenon
is because the behavior of array accumulation in lat_ctx test and
cache collision together lead to a “friendly” cache footprint at the
context switch point.

Fig. 7 depicts the overhead of context switch latency as a func-
tion of process size. For each process size, the lat_ctx overhead is
calculated from the geometric mean of the lat_ctx overhead among
the process numbers. In general, when process size is equal to or
smaller than cache size, the overhead decreases as process size in-
creases. We also found process size affects context switch latency
differently in FaSe and naive systems. For FaSe system, 16 KB pro-
cess size results in the lowest overhead, followed by 32 KB and
64 KB. For the naive system, 64 KB process size has the lowest
overhead, while 32 KB and 16 KB follow. This result is because
FaSe’s LLSF mechanism can save half the cache from flushing if
the content in the cache is equally owned by two processes. FaSe

0%
20%
40%
60%

ad
pc

m ae
s

math bf crc

dij
ks

tra fft
jpe

g
qs

ort

se
arc

h
sh

a
su

sa
n

mea
n

gm
ea

n

O
ve

rh
ea

d
R

ed
uc

tio
n

Figure 8: Execution time overhead reduction in percentage

of FaSe on top of naive system across MiBench programs.

main

set_key encfile

IOfillrandencrypt

(a) Call graph & CLSF scopes

1
1.05

1.1
1.15

0 1 2 3R
el

at
iv

e
Ti

m
e

Coverage

CLSF1 CLSF2 LLSF Naive

(b) Execution time versus CLSF schemes

Figure 9: FaSe CLSF AES case study. Relative execution time

is normalized on baseline AES. CLSF1: set_key and encfile in

yellow background. CLSF2: functions in dashed box in (a).

shows the largest overhead reduction in percentage in compari-
son to the naive method when process size is 16 KB. On average,
LLSF reduces context switch latency overhead of naive system by
42%. In comparison to the naive method, LLSF reduces 66% context
switch latency overhead in the best case (when process size is 16
KB). In summary, Linux kernel results demonstrate that FaSe can
significantly reduce mitigation overhead during OS execution.

5.2 Microbenchmark Results

Fig. 8 shows how much overhead due to flush-based mitigation in
the naive method is reduced by using FaSe (LLSF alone). Overall,
FaSe reduces the execution time overhead effectively by 36% on
average (geometric mean is 33%). Since mibench programs mostly
target embedded applications, some programs have few syscalls
and/or a small cache footprint. Hence, the overhead in these pro-
grams can be very small, such as susan. For other programs, FaSe
reduces the overhead significantly by around 30% to 56% from the
naive method. FaSe’s average time overhead is 7.6% (geometric
mean is 3.4%).

CLSF AES case study. AES (also called rijndael), which is a
security-critical application, from MiBench, is used to observe the
time saving of FaSe’s CLSF. Fig. 9 presents the schemes and results
of this case study. Fig. 9a shows the call graph, which consists of
the major functions in AES encryption. Based on this call graph,
we created two choices of CLSF critical segments. First, CLSF1
denotes CLSF covering set_key function and the main while-loop
in encfile function which calls encrypt. This scope is denoted as “1”
on the X-axis in Fig. 9. Second, CLSF2 covers set_key function and
encfile function. CLSF2 uses a larger scope as encfile function is
the parent function of encrypt. This scope is denoted as “2” on the
X-axis in Fig. 9. We compared CLSF1 and CLSF2 to LLSF and naive
methods. The coverage of LLSF and naive methods is of the full
program, denoted as “3” on the X-axis in Fig. 9. Fig. 9b compares
the relative execution time of these schemes. The relative execution
time is calculated by normalizing the baseline system. It can be
seen that FaSe CLSF can reduce execution time greatly (to about
1% overhead) from around 1.1 (equivalent to 10% time overhead,
LLSF) and 1.15 (equivalent to 15% time overhead, naive). Among
the CLSF schemes, CLSF2 takes slightly more time than CLSF1, due
to larger critical segment coverage.

545

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Tuo Li and Sri Parameswaran

Table 2: FPGA utilization across hierarchies.

Subject Resource Tile Core DCache Frontend Tile[-FPU]

Baseline LUT 30953 5451 2820 4844 14855
F/F 13916 2004 2596 4751 10125

FaSe LUT 30997 5457 2877 4861 14912
F/F 13991 2067 2607 4751 10198

Overhead LUT 0.1% 0.1% 2.0% 0.4% 0.4%
F/F 0.5% 3.1% 0.4% 0.0% 0.7%

f matrix

 0 10 20 30 40 50 60

Cache Set

 0

 20

 40

 60

 80

 100

S
a
m

p
le

 0

 200

 400

 600

 800

 1000

A
c
c
e
s
s
 T

im
e

(a) Baseline

f matrix

 0 10 20 30 40 50 60

Cache Set

 0

 20

 40

 60

 80

 100

 0

 200

 400

 600

 800

 1000

(b) Naive

f matrix

 0 10 20 30 40 50 60

Cache Set

 0

 20

 40

 60

 80

 100

 0

 200

 400

 600

 800

 1000

(c) FaSe

Figure 10: Prime+Probe attack results on the baseline sys-

tem, naive mitigation, and FaSe mitigation.

5.3 Hardware Results

To understand the hardware cost of FaSe, FaSe processor is com-
pared to the baseline processor. FaSe processor has both LLSF and
CLSF implemented. Overall, the only overhead of FaSe in resource
utilization is found in FPGA look-up tables (LUTs) and flip-flops
(F/Fs). The block RAM utilization is unchanged, because FaSe only
adds a few hundred bits in the tag array in the cache. The max clock
speed (clock frequency) is unchanged as the baseline processor,
since FaSe’s hardware does not change the critical timing path.

Table 2 shows the FPGA resource utilization overhead of FaSe.
Since the entire SoC includes many large uncore components, a di-
rect comparison at the SoC level will show negligible differences. To
make a finer comparison, we focus on the overhead at hierarchies
at and beneath the tile. Note that a tile (RocketTile) is a processor
core and its local private resources (caches, TLBs, etc.). In the tile,
the resource utilization of the key components, core, L1 D-cache
(DCache), and frontend (I-cache and other instruction fetch com-
ponents) are compared. Because FPU is quite a large component
in tile (and remains unchanged), a comparison is made of the tile
resource utilization with FPU’s utilization removed (written Tile

[-FPU]). As shown in Table 2, FaSe increases 0.1% LUTs and 0.5%
F/Fs. Without the FPU, this overhead becomes 0.4% LUTs and 0.7%
F/Fs. FaSe increases LUTs in the cache by 2%. The 3% F/F overhead
in the core is caused by cross-boundary optimization of Vivado
synthesis. These additional F/Fs are mostly from the FaSe hardware
in the cache.

5.4 Security Results

Fig. 10 uses heat maps to depict the Prime+Probe (a represen-
tative contention-based cache timing attack) results of the three
systems (the baseline system without protection in Fig. 10a, the
naive mitigation system in Fig. 10b, and the proposed FaSe mitiga-
tion system 10c). FaSe LLSF and CLSF (covering victim function)
showed equivalent effects in this experiment. In each figure, the
X-axis is the cache set from 0 to 63. Y-axis is the sample number.
One hundred samples are shown in these figures, which are suffi-
cient to illustrate the afforded protection. The Z-axis (heat color)
stands for the access time in clock cycles, taken for probing the
cache sets. As a result, without protection, the baseline system’s

victim cache access patterns can be seen (below 100 cycles shown
in deep purple and black). As shown in Fig. 10b and 10c, on naive
and FaSe systems, Prime+Probe observes misses in all cache sets
(more than 100 clock cycles, similar colors across cache sets). This
result shows that FaSe’s flush mechanism is effective for countering
contention-based on-core cache timing attacks.

6 CONCLUSION

In this paper, we have presented a novel flush-based method, FaSe,
to mitigate contention-based cache timing attacks. FaSe leverages
an ISA extension and modified cache microarchitecture to minimize
flush cost of the mitigation. Our experiment shows that FaSe can
mitigate contention-based timing attacks with negligible hardware
cost while reducing time overhead by 36% for user programs and
42% for OS context switch, in comparison to naive method.

ACKNOWLEDGEMENT

This research was supported by the Australian Research Coun-
cil (DP190103916). We would like to thank Defence Science and
Technology Group Australia for their support.

REFERENCES

[1] Yossef Oren et al. 2015. The spy in the sandbox: practical cache attacks in
javascript and their implications. In CCS ’15.

[2] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and
countermeasures: the case of aes. In CT-RSA’06, 1–20.

[3] Daniel J Bernstein. 2005. Cache-timing attacks on AES. Technical report.
[4] Qian Ge et al. 2019. Time protection: the missing os abstraction. In EuroSys

’19, 1:1–1:17.
[5] Leonid Domnitser et al. 2012. Non-monopolizable caches: low-complexity

mitigation of cache side channel attacks. TACO, 8, 4, (January 2012).
[6] Moinuddin K. Qureshi. 2018. Ceaser: mitigating conflict-based cache attacks

via encrypted-address and remapping. In MICRO ’18, 775––787.
[7] Wei Song et al. 2021. Randomized last-level caches are still vulnerable to cache

side-channel attacks! but we can fix it. In S&P ’21, 955–969.
[8] Yinqian Zhang and Michael K. Reiter. 2013. Düppel: retrofitting commodity

operating systems to mitigate cache side channels in the cloud. In CCS ’13.
[9] Oleksii Oleksenko et al. 2018. Varys: protecting sgx enclaves from practical

side-channel attacks. In USENIX ATC ’18, 227–239.
[10] A. Agarwal, J. Hennessy, and M. Horowitz. 1989. An analytical cache model.

ACM Trans. Comput. Syst., 7, 2, (May 1989).
[11] Mengjia Yan et al. 2017. Secure hierarchy-aware cache replacement policy

(sharp): defending against cache-based side channel atacks. In ISCA ’17.
[12] Zhenghong Wang and Ruby B. Lee. 2008. A novel cache architecture with

enhanced performance and security. In MICRO ’08, 83–93.
[13] Mario Werner et al. 2019. Scattercache: thwarting cache attacks via cache set

randomization. In USENIX ’19. (August 2019), 675–692.
[14] Taesoo Kim et al. 2012. STEALTHMEM: system-level protection against cache-

based side channel attacks in the cloud. In USENIX ’12, 189–204.
[15] Fangfei Liu et al. 2016. Catalyst: defeating last-level cache side channel attacks

in cloud computing. In HPCA ’16, 406–418.
[16] Xiaowan Dong et al. 2018. Shielding software from privileged side-channel

attacks. In USENIX ’18. (August 2018), 1441–1458.
[17] Thomas Bourgeat et al. 2019. Mi6: secure enclaves in a speculative out-of-order

processor. In MICRO ’19, 42–56.
[18] Nils Wistoff et al. 2020. Prevention of microarchitectural covert channels on

an open-source 64-bit RISC-V core. CoRR, abs/2005.02193.
[19] Tuo Li et al. 2020. SIMF: single-instruction multiple-flush mechanism for

processor temporal isolation. (2020). https://arxiv.org/abs/2011.10249.
[20] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient cache attacks

on aes, and countermeasures. 23, 1.
[21] Krste Asanovic et al. 2016. The Rocket Chip Generator. Technical report

UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
[22] Larry McVoy and Carl Staelin. 1996. Lmbench: portable tools for performance

analysis. In ATEC ’96, 23–23.
[23] M. R. Guthaus et al. 2001. Mibench: a free, commercially representative em-

bedded benchmark suite. InWWC ’01, 3–14.
[24] Yuval Yarom. 2016. Mastik: a micro-architectural side-channel toolkit. (2016).

https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf.

546

https://arxiv.org/abs/2011.10249
https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

