IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017

Fine-Grained Checkpoint Recovery for

647

Application-Specific Instruction-Set Processors

Tuo Li, Member, IEEE, Muhammad Shafique, Senior Member, IEEE, Jude Angelo Ambrose, Member, IEEE,

Jorg Henkel, Fellow, IEEE, and Sri Parameswaran, Senior Member, IEEE

Abstract—Checkpoint recovery (CR) is a classic fault-tolerance technique, which enables computing systems to execute correctly
even when affected by transient faults. Although a number of software and hardware based approaches for CR does exist, these
approaches usually are either too large, too slow, or require extensive modifications to the software and the caching/memory schemes.
In this paper, we propose a novel CR approach, which is based on re-engineering the instruction set of a target processor. We take the
base instruction set and augment the native micro-operations, i.e., an architectural description language (ADL), with additional micro-

operations to perform checkpointing at the granularity of basic blocks. The recovery mechanism is realized by three custom
instructions, which can undo the corruptions caused by transient faults during instruction execution, including the values of general-
purpose registers, data memory, and special-purpose registers (PC, status registers, etc.), which were incorrectly modified. Our
checkpoint storage is sized according to the application program executed. The experimental results show that our approach degrades
the system performance by just 0.76 percent when there is no fault, and introduces an area overhead of 44 percent on average and

79 percent in the worst case. During the fault injection test with the benchmark applications, the recovery took just 62 clock cycles

(worst case).

Index Terms—ASIP, checkpoint recovery, reliability

1 INTRODUCTION

OMPUTING systems must be protected against transient

faults, so as to guarantee that the computation running
on the system can be relied upon constantly [1]. In particu-
lar, for embedded systems, transient faults have been identi-
fied as one of the key reliability issues [2]. Mitigating
transient faults first needs to detect errors (this has been
intensively studied in [3], [4], [5]) and second to recover the
system when errors have been detected.

Checkpoint recovery (CR) has been studied as a viable solu-
tion for error recovery of transient faults [6]. Given the ever-
increasing impact of transient faults, in recent years, CR has
been investigated for embedded systems [7]. CR recovers the
current computing process (program) by using the most
recent checkpoint. A checkpoint is generated periodically,
which consists of data that keeps a copy of the error-free sys-
tem states. Depending on the checkpointing mechanism and
implementation style, the checkpoint data size and checkpoint
period (interval) can be varied. CR requires additional

o T.Liand S. Parameswaran are with the School of Computer Science and
Engineering, University of New South Wales, Sydney, NSW 2052,
Australia. E-mail: {tuol, sridevan }@cse.unsw.edu.au.

o M. Shafique is with Vienna University of Technology (TU Wien), Vienna
1040, Austria. E-mail: muhammad.shafique@tuwien.ac.at.

o J.A. Ambrose is with Canon Information Systems Research Australia, 5
Talavera Rd, Macquarie Park, NSW 2113, Australia.

E-mail: Angelo.Ambrose@cisra.canon.com.au.

e |. Henkel is with the Karlsruhe Institute of Technology, Karlsruhe

D-76131, Germany. E-mail: henkel@kit.edu.

Manuscript received 22 Dec. 2015; revised 26 Aug. 2016; accepted 29 Aug.
2016. Date of publication 6 Sept. 2016; date of current version 17 Mar. 2017.
Recommended for acceptance by P. Girard.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2016.2606378

resources, in terms of hardware and/or machine cycles, for
both generating checkpoints (i.e., state capture) and perform-
ing recovery (i.e., rollback). Focusing on general-purpose and
high-performance computing platforms (e.g., microprocessor
and data center), recent studies have discussed CR techniques
from two aspects: (1) Software-based CR introduces redundant
program and typically has large code size or considerable
fault-free performance overhead [8]; and, (2) Hardware-based
CR introduces specific modifications to the microarchitectures
(e.g., cache or memory) and redundant hardware blocks in a
processor, and are non-systematic and inflexible [9].

Embedded systems usually must satisfy stringent design
constraints, such as performance, area, and power. Hence, a
viable CR implementation for embedded systems have to be small,
fast, and energy efficient. Notwithstanding, adopting the
existing CR techniques is very likely to worsen time, area,
and energy constraints considerably. Application-specific
instruction-set processor (ASIP) has been widely adopted in
a variety of embedded application domains, such as com-
munication, multimedia, and so on. ASIP design, including
instruction set customization and extension [10], has been
intensively studied and successfully practiced, with respect
to the design constraints such as performance, power, and
area, in both industry (e.g., Cadence/Tensilica' and
Synopsys/ARC?) and academic circles [11].

Contribution. In this paper, we propose a transient-fault
countermeasure called ReLi, which is a fine-grained CR
approach for ASIP-based embedded processors. To the best

1. http:/ /www.tensilica.com/
2. http:/ /www.synopsys.com/IP/PROCESSORIP/
ARCPROCESSORS/

0018-9340 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

648

of our knowledge, ReLI is the first to realize CR at the basic-
block level by leveraging custom instruction design. In
addition, we present an ASIP design flow based on one of
the existing commercial tool (ASIPmeister), which can
generate the RTL description of the resultant processors
with ReLl functionality. Consequently, the cost in terms of
execution time, area, and power is reduced significantly
compared to existing techniques.

Paper Organization. The rest of the paper is structured as fol-
lows. Sections 2 and 3 discuss related work and assumptions.
Section 4 presents the conceptual idea of the proposed CR
scheme. Section 5 elaborates the detail of instruction set archi-
tecture (ISA) implementing ReLI scheme. Section 6 discusses
the ASIP design flow generating RELI processors. Section 7
gives experimental setup and results, followed by a further
discussion in Section 8. Lastly, Section 9 concludes the paper.

2 RELATED WORK

2.1 Software-Based Checkpoint Recovery
Software-based CR techniques do not require additional
hardware. CATCH [8] requires the modification in the com-
piler to insert checkpoint routine code into native code.
CATCH’s CR is reasonably fast but induces large checkpoint
data size. In addition, the static code size is increased. UIUC
reliability and security engine (RSE) [12] has a thread-level
CR mechanism, which needs OS support. Later in reliability
microkernel (RMK) [13], a loadable kernel module to support
application-level checkpointing is proposed and imple-
mented. Different approaches to perform software-based CR
for parallel programs, such as C? [14], the work by Dieter
et al. [15], BLCR [16], and WAG-DBI [17], have been pro-
posed for shared memory symmetric multiprocessors.

2.2 Hardware-Based Checkpoint Recovery
Hardware-based CR techniques, also referred as Backward
Error Recovery (BER), use special customization and
optimization in arbitrary micro-architectural components
(mainly storage components which contain process state) to
implement CR.

2.2.1 Cache-Based Checkpoint Recovery

Cagrer [18], [19] and SwicH [9] are different cache-based CR
techniques. These CR techniques utilize a specially
designed cache as a buffer to keep the temporary results of
computation, until the check is passed. In addition, the reg-
ister states are duplicated as a backup. Cache-based CR
techniques needs to invalidate and reload the cache to
rollback the state, which consumes millions of seconds.
Implementing cache-based CR requires modifying cache
replacement policy and architecture.

2.2.2 Memory-Based Checkpoint Recovery

REeVIVE [20] is a CR technique for shared memory multipro-
cessor system, which has a rollback delay of 0.82 s in the
worst case for 80 ms checkpoint period. REVIVE needs to mod-
ify the memory directory controller for capturing (this type of
checkpointing is called “logging”) the checkpoint data. The
checkpoint data is located in a special space in the memory.
Checkpointing and recovery are controlled by timer-inter-
rupt and the protocol is implemented in software.

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017

2.2.3 Separate Dedicated Checkpoint Storage

IBM S/390 G5 [21] is equipped with a full duplication of
register-file (R-unit), which serves as checkpoint data. The
rollback recovery in IBM S/390 G5 is around 1,000 clock
cycles. SAFeTYNET [22] is a coarse-grained (100,000-cycle
checkpoint period) CR approach for multiprocessor sys-
tems. SAFETYNET uses separate special storages for cache and
memory states. However, no exact experimental data is
shown for recovery time.

2.3 Checkpoint Recovery for Embedded Systems

A two-state CR system (TsCP) was proposed in [23] for use
in embedded sytems, which combines two different check-
pointing schemes for fault-free and faulty scenarios, respec-
tively. TsCP creates both uniform and non-uniform
checkpointing intervals so as to reduce the number of
checkpoints. TsCP requires the checkpoint data size in the
order of kilo-bytes, while both checkpointing and rollback
takes around 44 to 885 us. OceaN [24] optimizes CR by tar-
geting given cost constraints such as performance, area, and
energy. The checkpoint period and checkpoint data sizes
are carefully configured based on the optimal results, which
are obtained from OceaN’s cost model. For multicore
embedded systems, P1200 [25] architecture was proposed.
P1200 implements task-level CR for multiple processor clus-
ters, communicated by NoC. Execution time overhead of
P1200 is around 6 to 100 percent, depending on the task size
and data size. The rollback time overhead is 12 percent.

2.4 Summary

The software-based CR techniques [8], [12], [13], [14], [15],
[16], [17], [23], [24], [25] checkpoint all necessary program
variables. Hence, these techniques have enormous check-
point data, which slows down recovery. Additionally, the
software-based techniques need the code size to be signifi-
cantly increased for CR functions. The recovery time of the
software-based CR techniques is quite large, e.g., in the
order of milliseconds or even seconds.

Many of the hardware-based CR techniques [9], [18], [19],
[20], [21], [22] have either relied on register, cache or memory
to back up checkpoint data. The cache-based CR techniques
[9], [18], [19] have to modify cache replacement policy and
dependent on the inclusion of cache in the system. The mem-
ory-based CR techniques [20], [22] slows down the system
because the checkpointing has to be performed in memory.

In contrast to the previous methods for general systems
and embedded systems, we integrate the CR functionalities
into the processor by leveraging custom instructions. As a
result, in each instruction, the processor can perform check-
pointing automatically. In addition, checkpoints are
assigned at a far finer granularity (i.e., instruction and
basic-block level) than previously considered. Hence, the
performance constraint can be more easily satisfied com-
pared to existing techniques. Moreover, the cost in terms of
execution time, recovery time, area, and power is reduced
significantly.

3 FAULT TYPE AND ASSUMPTIONS

This paper targets transient faults only, and does not exam-
ine permanent faults. We assume a single bit-flip happens

LI ET AL.: FINE-GRAINED CHECKPOINT RECOVERY FOR APPLICATION-SPECIFIC INSTRUCTION-SET PROCESSORS 649

start ?
Rollback*
™| restore process*

ADD R2,R3,R4
state capture*

Task/Process R2 < R3 + R4

I

I

I

I

I

|

I

I

|

I

I

|

SUB R6,R7,R8 1
state capture® ggﬁart !
BB2 R6 <~ R7+ R8 i
|

I

I

|

I

I

|

I

I

|

I

I

|

I

J 400140
state capture*
PC + 400140
checkpoint validation®

fault

correct & go to next BB

Fig. 1. Overview of Reu functionality. Symbol “*” denotes the underlying
operation or state is related to Reu functionality. The grey frame on the right
is a state-transition diagram showing the operations within the underlying
basic block (also in grey). BB1 is assumed to have three instructions
originally.

during the execution of a program. This assumption has
been commonly established in the studies targeting tran-
sient faults [26]. As error-correcting codes (ECC) [27] can be
applied to register-file and memory, we assume that bit-
flips in register-file and memory are self-correcting. A typi-
cal CR technique can mitigate three types of faults, which
are manifested at the architectural level:

e Data fault—when incorrect data is written to the

registers or memory;

e Address fault—when the data is written to incorrect

location of the registers or memory; and

e Control fault—when an incorrect operation is exe-

cuted (e.g., ADD instead of SUB).

If these faults can be detected by any means, then CR
method described in this paper can be activated to restore the
register and memory states, which were corrupted, by rolling
back the changed values in the registers (including PC and
status registers) and memory to a fault free state. We assume
that the CR hardware is fault-free. In this paper, the baseline
processor assumed is a single-issue in-order integer unit.
Checkpointing of out-of-order processors is out of the scope
of this paper. In addition, since embedded systems are typi-
cally deployed with on-chip memory [28], the baseline proces-
sor is assumed to be working with on-chip memory, which
can be accessed within one or two clock cycles [29].

4 RELI CHECKPOINT RECOVERY SCHEME

4.1 Definitions
We define the following terms to better explain RELI
functionality.

o Architectural states (AS) are a set of values of the pro-
gram-transparent storage such as registers and data
memory. Architectural states are main objects which
are captured during RELIs state capture, and restored
during the rollback operations.

e Checkpoint data (CD) is the data required to restore
the architectural states. ReLI's checkpoint data covers
the architectural states. Checkpoint data is generated
in state capture operation. Thus CD includes AS as
well as the places to where the data should be
restored.

o Checkpoint storage (CS) is the memory that holds the
checkpoint data. Checkpoint storage is written dur-
ing RELI's state capture operation and if necessary
read back in the rollback operation.

4.2 Overview

Fig. 1 shows an overview of ReLI's fine-grained CR functional-
ity, which is at the basic-block level. In each basic block, ReLr's
state capture operation allows every instruction to automati-
cally back up architectural states, which are changed by that
instruction (for example, When ADD R2, R3, R4, occurs, the
original value of R2 will be backed up, before being updated
with the new value). State capture is performed simulta-
neously with the original instruction. A checkpoint validation
(e.g., control flow checking) is performed at the end of each
basic block. If a fault occurs, the last instruction in the basic
block initiates a rollback.

ReLI's rollback operation restores the architectural states
to the most recent correct value. After the rollback opera-
tion, the states of the process/task are identical to those
before entering the basic block. Fault detection, which has
been extensively covered by other bodies of research (con-
trol-flow based or data-flow based) [4], [5], [30], is assumed
to be given and not a part of ReLL

4.3 Elements of State Capture Functionality
Figs. 2a, 2b, 2c, and 2d present the basic components of state
capture functionality. The rule of thumb of this functionality
is making a backup before committing an update to the architec-
tural states. The first component, shown in Fig. 2, is identifica-
tion of target architectural states that are to be captured or
backed up. A target architectural state is defined as a mem-
ber of the set of architectural states, which is the destination
(being written/updated) of the underlying instruction. To
this end, the specific code field in the instruction code needs
to be fetched and decoded to obtain the address of target
architectural states.

The second component, shown in Fig. 2b, is fetching the
value of target architecture states. This step requires the
address of the target architecture states from the first

| target addr I I target state value |

I checkpoint data |

identify/decode

v

(a) State identification

target addr

read access to target arch

target state value

(b) Fetching

combine/encode

X ¥

(c) Data generation

next PC value

write encode&push

¥ X

(e) PC

stack push

checkpoint storage

(d) Data write

Fig. 2. Basic components of state capture functionality. The components are ordered in sequence of occurrence during a state-capture event.

650 IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017
TABLE 1 TABLE 2
Instruction versus Checkpoint Storage Primitive versus Reduced State Capture for Registers
Cycle Instruction Operation AS cSs Cycle Instruction Operation > S
¢ ADD R1, R2, R3 R3— R1+R2 R3 i ¢ ADD R1, R2, R3 R3 — R1+ R2 1 1
t+1 SUB R4, R5, R6 R6 — R4 — R5 R6 i+1 t+1 SUB R4, R5, R6 R6 +— R4 — R5 2 2
t+2 LD R3, R6, R3 R3«— M[R3+R6] R3 i+2 i = 2 LD R3, R6, R3 R3 — M[R3 + R0 3 2
t+3 AND R3, R0, R3 R3 — R3 N\ RO R3 i+3 t+3 AND R3, R0, R3 R3 «— R3 A\ RO 4 2

AS: address of target architectural state.
CS: address of CS. higher address are closer to stack top.

component. This component also adds one read access to
the corresponding resource, for example, register file read
access and memory read access.

The third component, shown in Fig. 2c¢, is generating check-
point data. In order to guarantee that checkpoint data is suffi-
cient for rollback, both the address and value of target
architectural state are required. These two informations are
provided by previous components. To combine the informa-
tions together, an encoding method is needed. Here, we adopt
a simple encoding method, which concatenates the two inputs
in such form as CD = target_addr || target_state value where
the bits of address are more significant bits followed by the
bits of architectural state value. Hence, the total width of
checkpoint data is equal to the sum of the numbers of address
bits and value bits. For one target architecture state ¢, this rela-
tion is given as

size_CD; = width_addr; + width_value;, (1)

which are architecture dependent.

The fourth component, shown in Fig. 2d, is pushing check-
point data into checkpoint storage. Checkpoint storage is gener-
ally a stack, meaning a last-in-first-out (LIFO) structure. As
shown in Table 1, LIFO structure is optimal as it guarantees
the most recent state is first written back for an architecture
state during rollback. To decreasing memory overhead,
checkpoint storage is separated from the main memory. In
addition, as suggested by Equation (1), size_.CD can vary
amongst different architectural states. Therefore, CS includes
separate stacks, each of which is associated to one type of
architectural states (e.g., registers and memory). After check-
point data is generated, it is written into checkpoint storage in
the fashion of stack push. Given a basic block j, the size of
checkpoint storage is determined by the number of target
architectural states (target.AS), shown in the following
equation

size CS;=) size.CD;;, Itarget AS C AS. (2)
ictarget_AS

Therefore, for an application consisting of £k number of basic
blocks, the size of checkpoint storage is bounded by the
maximum size of checkpoint storage amongst the basic
blocks. This relation is given as

size CS = [size CS;|,Vj e N*,j < k. 3)

4.4 Reduced State Capture for Registers

Reduced state capture is motivated by the property that cap-
turing a subset of target architectural states, in a basic block,
might satisfy the requirement of rollback or restoring the

>~ cumulative sum of the number of primitive state capture.
S cumulative sum of the number of reduced state capture.
Note: highlighting denotes redundant state capture.

status of process to the end of the most recent basic block.
Therefore, not all the occurrences of register write/update in
a basic block is necessary for state capture, and therefore
state capture for those states is redundant. Avoiding redun-
dant state capture is a leverage to reduce the cost in terms of
CD and CS size. Table 2 provides a comparison to primitive
state capture with the same instructions in Table 1. Without
the functionality of reduced state capture, redundant state
capture occurs in instructions at ¢ + 2 and ¢ + 3 (highlighted),
which accommodate write events to the same address R3.

Fig. 3 shows the functionality of reduced state capture for
registers. The rule of thumb is to ensure redundant state
capture is disabled. To this end, reduced state capture for
registers keeps a table of “history” for the state capture
events in every basic block. Fig. 3a depicts the mapping
between the table (highlighted in grey) and registers. An
index ¢ € [0, N] in the table is associated to 1-bit binary value
hi (h; € {True,False}), and one register address R;. History
table is a special storage. The size of table,
size. HT =1- (N + 1), is determined by the total number of
registers (N + 1), since the association of index to registers
is a direct one-to-one mapping.

Fig. 3b depicts the algorithm of using history table to
avoid redundant state capture for registers. Upon state cap-
ture, h; = Fualse indicates that the state of R; has not been
captured during the previous executions in the current basic
block. In this case, state capture is not redundant and
allowed on R;. On the contrary, h; = True means that the
state of R; has been captured, and thus state capture is
redundant and avoided. At the end of basic block, the val-
ues in history table are reset to False. In fault-free situation,
history table reset occurs after checkpoint validation and
before entering the next basic block. Otherwise, it occurs
after rollback and before restarting the current basic block.

4.5 Special State Capture for Program Counter (PC)
Program counter is a special architectural state. State cap-
ture for PC is different from that for other states. PC is
deterministically written/updated in every instruction,

Index Value Register F -
0|[TF-» Ry r-dlsabled
1||F -+ Ry

2|[FF-» Ry

|- . bled

(b) Algorithm

(a) “History”

Fig. 3. Functionality of reduced state capture for registers.

LI ET AL.: FINE-GRAINED CHECKPOINT RECOVERY FOR APPLICATION-SPECIFIC INSTRUCTION-SET PROCESSORS 651

checkpoint data

decode

stack pop

v
)

(a) Fetch

target state value

write target arch

| target addr | | target state value | | target addr I

(b) Data decode (c) Correct state

Fig. 4. Basic components of rollback functionality. The components are
ordered in sequence of occurrence during a rollback event.

albeit state capture for PC happens only at the last
instruction of every basic block. The reason is that roll-
back aims to restore the status of the process to the entry
point of the underlying basic block and therefore the sub-
sequent changes on PC are negligible except the last
update on PC in the previous basic block before entering
the underlying basic block.

The mechanism of special state capture for PC is shown
in Fig. 2e. State capture is activated only on condition that
checkpoint validation is successful, meaning there has been
no faults during the underlying basic block. State capture
for PC generates checkpoint data on next PC value and
push checkpoint data into CS, along with the original PC
write operation. CS for PC can either be a part of CS for
registers (with need for encoding) or a unique separate stor-
age (without need for encoding). If using a separate stack,
size_CSpc is equal to width_value .

4.6 Rollback Functionality

Fig. 4 depicts the basic components in rollback functionality,
which are essentially in opposite order to those components
in state capture. The rule of thumb of this functionality is
undoing the update on the architectural states that is committed
by an original operation of a faulty basic block.

The first component, shown in Fig. 4a, is fetching check-
point data from checkpoint storage. As checkpoint storage is
LIFO structure (stack), checkpoint data is popped out from
the stack top. The second component, shown in Fig. 4b is
decoding checkpoint data to get address and value of target
architectural state. Corresponding to the encoding scheme
in state capture, the more significant bits are taken as
address, and the less significant bits are taken as value. The
third component, shown in Fig. 4c is correcting the architec-
tural state by writing the decoded value back to the decoded
address. The number of write events is equal to the number
of state capture events in the underlying basic block.

As rollback functionality is not performed (all the time)
along with the original operations of the application (as
opposed to state capture functionality). Therefore, this func-
tionality is integrated into the original application, in form
of an additional routine/function. Thus, control transfer is
needed at two time points, i.e., upon starting and finishing a
series of basic steps in rollback. For a rollback event, the first
control transfer moves the original operating state (the pro-
gram of the underlying application) to rollback operating
state, while the second one moves the operating state in the
opposite direction.

Rollback routine mainly consists of three while-loops.
The first loop handles register-file rollback. The second loop
manages data memory rollback. The third loop implements
special-register rollback. In each loop, the three basic steps
(i.e., fetch, decode, and correct) are executed. Before control
transfer back to the original program, resetting checkpoint
storage is done.

5 RELIINSTRUCTION SET ARCHITECTURE

This section presents the implementation of ReLI functional-
ity on top of original (baseline) instruction set architecture.
The implementation includes two major parts correspond-
ing to state capture and rollback respectively. State capture
is implemented by customizing original instructions, while
rollback is implemented by extending original instruction set
(creating custom instructions).

Table 3 provides the overview of ReLI ISA. For the sake
of brevity, this table shows the selected representative
instructions in subset o and three ReLI custom instructions
(i.e., subset pB). The following sections will elaborate
implementation of RELI instruction set architecture along
with this table.

5.1 Base Instruction Set Architecture
The base instruction set architecture is a single-issue in-
order RISC architecture, which is typical for embedded pro-
cessors, with integer unit (i.e., excluding floating-point
unit). At the current form, cache structure is not considered
in the baseline architecture. The base instruction set is porta-
ble instruction set architecture (PISA) from SimpleScalar
tool suite [31], which is a close derivative of MIPS-IV [32].
The base instruction set (excluding floating-point instruc-
tions) has 72 instructions, in which seven instructions are
selected as representative instructions in Table 3. These
instructions are addition (ADD), multiplication (MULT),

TABLE 3
ReLl Instruction Set (with Selected Subset « Instructions)

Subset Instruction Type Original Operations

ReL1 Operations

ADD ARI GPR(rt) « GPR(rs) + GPR(rd)
MULT ARI HILO « GPR(rs) x GPR(rd)
o LW L/S GPR(rt) «— MEM[GPR(rs) + GPR(rd)]
SW L/S MEMI[GPR(rt)] « GPR(rs) + GPR(rd)
] CT PC « target
JALR CT GPR(rd) < PC + 8, PC — GPR(rs)
BEQ CT if GPR(rs) = GPR(rt) then PC « PC + offset
RFRB n/a n/a
B SRRB n/a n/a
DMRB n/a n/a

reg_capture(GPR(rt))

reg_capture(GPR(rt))

reg_capture(GPR(rt))

mem_capture(MEM[GPR(rt)])

validate(), pc_capture(target)

validate(), reg_capture(GPR(rd)), pc_capture(GPR(rs))
validate(), pc_capture(PC + offset)

reg_rollback(i), Vi € GPRNCS

reg_rollback(i), Vi € SRNCS
mem_rollback(i), Vi € MEM N CS

652

I rt
GPR (RF)
v

' aPR (RF) || RF Pointer |
1

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017

History Table Control

History Table Array

¥

1
:

GPR (RF)
(a) ADD

Fig. 5. Datapath of R-type ADD, I-type SW, and J instructions in ReLI ISA.

load-word (LW), store-word (SW), jump (J), jump-and-
link-register (JALR), and branch-if-equal (BEQ). The
instructions can be categorized into three major types:
arithmetic (ARI), load/store (L/S), and control transfer
(CT). ARI includes two representative instructions: ADD
and MULT. L/S includes two: LW and SW. CT includes
three: J, JALR, and BEQ.

5.2 Reu Checkpointing Instructions

To demonstrate the design of ReLI checkpointing instruc-
tions (Subset «), we elaborate the implementation of three
representative instructions, addition, store-word, and jump.
The rule of thumb in designing Subset « instructions is
ensuring the original path is included in the resultant new
datapath. This rule allows the REeLI instructions to be able to
perform original operations defined by the given baseline
instruction set architecture.

5.2.1 ADD Instruction

Fig. 5a presents ReLI's implementation of ADD instruction (R
type). The datapath includes two parts: the original one on
the left and the augmented one in the dashed frame on
the right. The original part implements the operations
for addition that are equivalent to the counterpart in
baseline architecture. The augmented part in ADD
instruction implements the functionality for register-file
state capture, which are described in Sections 4.3 and
4.4. The augmented part essentially is a separate path, of
which the data source is rd field> from the decoded
instruction code. In ADD instruction, rd is the address of
the target AS. The black blocks represent the hardware
components realizing reduced state capture (depicted in
Fig. 3). Both black and gray colors denote the hardware
blocks that are implemented for REeLI functionality.

In specific, History Table Control is hardwired imple-
mentation of the algorithm in Fig. 3b, while History Table
Array the index-value pair in Fig. 3a. Using rd as the input,
History Table Control reads the corresponding value in His-
tory Table and makes decision on avoiding the state cap-
ture. The decision signal is the input to RF and RF pointer.
If the state capture is allowed, the corresponding RF read
access is operated. The value read from RF is encoded with
rd to make CD. RF Pointer and CS RF are combined
together to work as a stack. RF Pointer’s value is the address

3. Defined as bits [15 : 8] in R-type instruction code in SimpleSca-
lar PISA.

of next empty entry/slot in the stack. If the state capture is
allowed, RF Pointer’s current value is read and write access
to CS_RF at the address with CD is enabled.

The RF state-capture operations are all scheduled in
pipeline stage 2, i.e., instruction decoding (ID) stage. Based
on the functionality discussed in Section 4.4, the operations
are scheduled: (1) history table is read at first using rd as
input; (2) based on the result from history table read, the RF
and its pointer (RFP) are read to obtain both checkpoint
data and the next empty CS location; and, (3) Checkpoint
data is written into the the next empty CS location, while
the RFP is incremented.

5.2.2 SW Instruction

Fig. 5b presents ReLI's implementation of SW instruction (I
type). This instruction is an example of using immediate field
imm to calculate address of target AS and doing state capture
for data memory. Similarly, the augmented part is in dashed
frame. In comparison to the ReLI instructions with RF target
AS (e.g., ADD), ReL instructions with DM target AS (e.g., SW)
have relatively simple augmented part. As there is no reduced
state capture functionality in ReLr SW, the augmented part
only implements elemental state capture functionality. The
data source of the augmented part is an intermediate variable
addr, which is the address of the data memory for the original
memory write operation. This variable is the output of ALU’s
addition operation with imm and corresponding register
value in RF. DM Pointer works similar to RF Pointer in ADD.
Provided addr, data memory read access is operated to fetch
the corresponding value and to encode CD. At last, CD is
written into CS_DM at the address pointed by DM Pointer.

DM state-capture operations are scheduled at two pipe-
line stages, MEM1 and MEM2. In SW instruction, there is
only one memory write happening at Stage 4. Hence, DM
state capture operations are also scheduled at Stage 4. The
sequence of DM state-capture operations is as same as that
of RF state-capture operations, except there is no operation
related to history table any more.

5.2.3 JInstruction

Fig. 5¢ presents ReLI's implementation of | instruction.] and
other control transfer instructions act as the exit point of
current checkpoint period. Thus, there are two sets of RELI
operations implemented: checkpoint validation and state
capture for PC. The augmented datapath has two data sour-
ces. One is the variable npc denoting the next value for PC.

LI ET AL.: FINE-GRAINED CHECKPOINT RECOVERY FOR APPLICATION-SPECIFIC INSTRUCTION-SET PROCESSORS 653

[ir]

H-reg History J L-reg History

(b) SRRB

(a) RERB

Fig. 6. Datapath of rollback instructions in ReLI ISA.

npc is an intermediate variable in original datapath and its
value is from target field* in J-type instruction code. The
other data source is output of error detection logic (ED),
which is assumed” in this work and illustrated with shadow
in Fig. 5c. The output from ED affects: enb (enable) signal to
PC and CS_PC, and rst (reset) signal to the hardware com-
ponents (i.e., pointer and table logics) that implement RF
and DM state capture.

In specific, writing npc to PC and CS_PC, as well as reset-
ting state capture components, are allowed, if ED’s output
indicates error-free. Enabling PC and CS_PC allows the pro-
cessor to execute the next basic block, while resetting
pointers and table logics refreshes the relevant logics for
state capture operations dedicated to the next basic block.

5.3 Reu Rollback Instructions

Rollback (Subset) instructions realizes the rollback function
specified Section 4.6. There are three rollback instructions
dedicated to three loops for rolling back RF, data memory,
and special registers, respectively. These instructions are reg-
ister file rollback (RFRB), data memory rollback (DMRB),
and special register rollback (SRRB). Fig. 6 presents the data-
path of RFRB in (Fig. 6a) and SRRB (Fig. 6b) instructions.
Since the datapath of DMRB is very similar to RFRB, we will
use Fig. 6a to discuss DMRB as well.

5.3.1 RFRB Instruction

RFRB, shown in Fig. 6a, implements the loop for RF roll-
back. After the instruction code is decoded, the RF pointer
is read to obtain the current RF pointer value (val_rfp). If
val_rfp # 0, the instruction will pop out one element (check-
point data) from CS_RF, and decrement RF pointer. In the
next step, the address bits and value bits are obtained from
the checkpoint data to restore the corresponding register in
RF. At last, the instruction lock the PC value to the current
PC value (cpc), so as to continue executing RFRB in itera-
tion. If val_rfp = 0, RFRB will disable rollback operations
(equivalent to a NOP instruction). Without any change to
the PC value, RFRB naturally pass the control to DMRB,
which is at the next PC address.

5.3.2 DMRB Instruction

DMRB implements the loop for data memory rollback. The
datapath of DMRB is almost same as RFRB, except that

4. Bits [25:0] of J-type instruction code in SimpleScalar PISA.
5.We assume ED as a block-level control-flow based detection
mechanism, such as CFCSS [33] and IMPRES [30].

Minimum CS size

ISS based 1| Customize ADL Resource
Runtime Analysis (Micro-operation) Library
(FHMDB)

|
|
| T
| Reli ADL —+
|
Reli Processor : .
RTL <——— ADL-to-RTL Synthesis (PEAS-III)
|

Fig. 7. ReLi ASIP design flow.

Reli ISA

DMRB uses DM Pointer and CS_DM. After the instruction
code is decoded, the DM pointer is read to obtain the cur-
rent DM pointer value (val_dmp). DMRB will be iteratively
executed until val_.dmp = 0. When val_dmp = 0, DMRB also
performs as a NOP instruction, and passes the control to the
last instruction in rollback routine, which is SRRB.

5.3.3 SRRB Instruction

SRRB, shown in Fig. 6b, implements the last parts of roll-
back functionality. Because PISA only has two special regis-
ters (high and low registers for the instructions related to
multiplication and division), the loop implementation is
simplified by using two history registers corresponding to
high and low registers. In addition, CS_SR is implemented
as two normal registers instead of a stack. After the instruc-
tion is decoded, the instruction checks the history bits. If
one history bit is true, the instruction moves the correspond-
ing checkpoint data from CS_SR back to the special register
associated to the history bit. As the last instruction in the
rollback routine, SRRB also writes back the PC value stored
in CS_PC, in order to change the control flow of the proces-
sor to the beginning of the current checkpoint interval. At
last, SRRB resets all the history bits, including the history
bits for RF and high/low registers.

6 RELI ASIP DESIGN FLOwW

Fig. 7 depicts the flowchart of our ReL1 ASIP design flow. ReLI
ASIP design flow is implemented based on a commercial tool
called ASIPmeister, which includes an architectural
description language (ADL) specification, a resource library,
and a ADL-to-RTL synthesis engine. The ADL specification,
called micro-operation, describes the data transfer and opera-
tions in the instructions. Fig. 8 depicts the example ADL codes
of the R-type ADD instruction, from the base ISA and RELl
ISA. For brevity, the variable (wire) declaration is omitted.
The base ISA on the left only has four operations, for fetching
operand registers. In comparison, the ReL1 ISA on the right
has more operations. The first part (grey color background) of
micro-operations are about history table access and history
checking. In this part, the last micro-operation generates the
control signals (i.e., “cond1”) for register state capture. The
last part (black color background) of micro-operations are
mainly register state capture, including reading RF (GPR),
concatenating register address and value bits, and writing

654

clk(2X
tmp_source0 = GPR.read0(rs);
tmp_source1 = GPR.read1(rt);

source0 = FWUO.forward(rs,tmp_source0);

sourcel = FWU1.forward(rt,tmp_source1);

}

clk(2{
tmp_source0 = GPR.read0(rs);
tmp_source1 = GPR.read1(rt);

source0 = FWUO.forward(rs,tmp_source0);

source1 = FWU1.forward(rt,tmp_source1);
flag_sel =rd;

pre_flag = bufflag.read();
a0 = flag_sel == "00000";

a31 =flag_sel =="11111";
var_flag = <a31,a30,...,a0>;
tmp_flag = var_falg | pre_flag;

= [cond1] GPR.read4(rd);
reg02 = [cond1] FWU4.forward(rd,reg01);

data = <rd,reg02>;

null = [cond1]RFRAMreq.write(one1b);
null = [cond1]RFRAMrw.write(one1b);
null = [cond1]RFRAMaddr.write(one1b);
null = [cond1]RFRAMdout.write(data);
null = [cond1]bufflag.write(tmp_flag);

}

Fig. 8. Comparison of microoperations of ID stage in ADD between the
base (left) and Rei (right) ISA.

checkpoint data to checkpoint storage. The last micro-opera-
tion updates the history table.

The resource library consists of the parameterized VHDL/
Verilog descriptions of the functional units, such as ALU,
adder, multiplier, etc. The ADL-to-RTL synthesis engine,
called PEAS-TIIT [34], converts the high-level description of
the ISA to the RTL description of the corresponding
processor.

In ReL1 ASIP design flow, there are two inputs. First, the
base ISA is SimpleScalar PISA, which is discussed in
Section 5.1. Second, the target application(s) described in
assembly language. Given the two inputs, the major steps of
ReLI ASIP design flow are as follows.

ADL Customization. Based on the ADL of base ISA, the ADL
model of ReLI ISA is manually created. The major functional
units in REeLI instruction’s datapath (discussed in Section 5)
are allocated and sequenced (scheduled) during this step. In
order to resolve the size of checkpoint storage, instruction-set
simulator (ISS) based profiling is adopted as well.

ISS Based Profiling. Based on the ADL of ReLI ISA, ReLI ISS
is built on top of SimpleScalar simulator [31]. ReL1 ISS has
runtime analysis functions, which profile the program’s
runtime events and calculate the application-specific mini-
mum size of checkpoint storage. The minimum checkpoint
storage size is the worst-case size amongst all the check-
point intervals during program’s execution. These runtime
functions mainly implement Equations (1), (2), and (3). The
profiling result is passed back to ADL customization to
determine the final ReL1 ASIP ADL.

In addition, for running RTL simulation with ReLI pro-
cessors, the methodology in [35] is adapted to generate the
resultant simulation model of memory. This process also
inserts the REeLI rollback instructions (i.e., rollback routine)
into the instruction code in the instruction memory. The
starting PC address of the rollback routine is passed to RELI
ASIP design flow as well.

7 EXPERIMENT AND RESULTS

7.1 Experimental Setup
Experiments were conducted on a computer with the fol-
lowing configuration: Intel Xeon X7560 CPU (2.27 GHz),

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017

Simulation
RTL

Base/Reli Processors

Cs
Configuration

Synthesizable
RTL

|2 w/o D w/D K
Fault-free RTL Fault Injection Logic Synthesis FPGA Synthesis SRAM Modeling
Simulation Test (Synopsys DC) (Xilinx ISE) (Cactii)
T T T
1000 iterations w/o opt, P&R w/ P&R
v v v
Fault-free Fault Recovery Timing, Area, Timin Area, and
Execution Time Time and Power 9 Power

Fig. 9. Experimental methodology.

24 MB cache, and 256 GB main memory. As shown in Fig. 9,
our experimental methodology includes RTL simulation,
synthesis (shown in grey), and SRAM for checkpoint stor-
age (CS) models (shown in black). Specifically, the experi-
ment consists of five flows. Fault-free RTL simulation to
provide the cycle-accurate fault-free execution time. We
also evaluated the reduction in the number of state capture
by the use of the history table in ReLI using this simulation
model. The results from the RTL simulation model for the
fault free scenario are discussed in Section 7.2. Fault injection
test examines fault recovery time, i.e., rollback time. The
recovery times are discussed in Section 7.3. Logic synthesis
shows the hardware cost, which is bound to a real-world
ASIC fabrication technology. Hardware costs are discussed
in Section 7.4. FPGA synthesis presents the timing impact of
ReLI after place-and-route (P&R), targeting a contemporary
commercial FPGA device and technology. The FPGA timing
result is discussed in Section 7.5. SRAM modeling is used to
study the impact of different implementation for checkpoint
storage, including D-flip/flop (DFF) and SRAM. These
memory results are discussed in Section 7.7.

The RTL simulation environment used is Mentor
Graphics ModelSim (a HDL simulator).” The logic syn-
thesis tool used is Synopsys Design Compiler.” The
FPGA synthesis tool used is Xilinx ISE.* The SRAM
modeling tool is Cacti.” The details of the tool configura-
tion are introduced in the corresponding sections.

The benchmark applications used for RTL simulation are
from MiBench suite [36] and represent typical applications
for embedded processors. For simulation flows, we only
tested selected MiBench applications. The reason is twofold:
(1) the code and data size of MiBench is suitably small for
RTL simulation; and, (2) our RTL simulation environment
(e.g., boot-up and system-call implementations) does not
support SPECINT applications. For synthesis flows, we tar-
geted both six MiBench and six SPECINT' applications, so
as to find the worst-case scenario for hardware overhead.
The application binaries are generated using the SimpleS-
calar PISA compiler [37].

In the experiment, we tested three different types of pro-
cessors: Base processor is defined as the processor that shares
the base pipeline (no CR hardware) with a REeLI processor

6. http://www.model.com/

7. http:/ /www.synopsys.com/Tools/Implementation/
RTLSynthesis/

8. http:/ /www xilinx.com/products/design-tools/ise-design-suite.
html

9. http:/ /www.hpl.hp.com/research/cacti/

10. https:/ /www.spec.org/cpu2006/CINT2006/

LI ET AL.: FINE-GRAINED CHECKPOINT RECOVERY FOR APPLICATION-SPECIFIC INSTRUCTION-SET PROCESSORS 655

£ D
< 15
3]
o 1
£ __o——6— o
2 05
© o : : : :
adpcmenc adpcmdec bfenc bfdec crc32 strsrch
Application
Fig. 10. Fault-free execution time results.

and only executes the native instruction set. ReLI general pro-
cessor (GP) is the processor with Reli functionalities, which
is directly augmented on top of a base processor with full
integer instruction set. Reli GPs are synthesized to observe
the worst-case overhead in terms of area, power, and tim-
ing. ReL1 application-specific instruction-set processor is the pro-
cessor with Reli functionalities, which is augmented on top
of a base processor with a special instruction set. The special
instruction set is tailored for the target application. In this
paper, we only applied instruction-set pruning for tailoring
one instruction set. An instruction is pruned, if the instruc-
tion is never used in the target application’s execution. The
corresponding hardware of a pruned instruction is not
implemented. These ASIPs are tested in both simulation
and synthesis. Before evaluation, the baseline processors
are generated, and their functionality is verified.

7.2 Fault-Free Simulation Results

Fig. 10 presents the fault-free execution time results. Fault-
free execution time represents the processor performance
while there is no fault occurrence in the system. Base pro-
cessor (without any recovery mechanism installed) and the
ReL1 ASIPs are compared for fault-free execution time across
the six applications. The y-axis is the fault-free execution
time overhead in percentage The main reason of the fault-
free execution time overhead is the pipeline stalls, caused
by pipeline resource hazards. The worst-case execution
time overhead is 1.84 percent in strsrch, which has the
most number of pipeline stalls when RELI processor executes
the program, while the least overhead is 0.31 percent in
adpcmdec. The average execution time overhead across the
six applications is 0.76 percent.

Fig. 11 demonstrates the effect of using history table for
reducing the number of register state capture. The y-axis is
the percentage of reduction for register state capture, in com-
parison to the naive scheme, which performs same CR with-
out history table. Without history table, there are much more
register state captures during program runtime. As a result,
we observed significant reduction of register state captures
among the six applications. The maximum reduction is 57
percent in strsrch, while the minimum reduction is 44.3
percent in bfdec. The reason for the greater reduction in
strsrchis that strsrch has the greatest number of register
writes with the same destination registers (equivalent to the
number of redundant register state captures defined in Sec-
tion 4.4). The average reduction is as high as 50.8 percent. This
result indicates the efficacy of history table in ReLI CR scheme.

7.3 Fault Injection Test
7.3.1 Test Methodology

The fault-injection test environment is implemented using
Python and bash scripts. Bit-flips are injected into the

44 T T == T
adpcmenc adpcmdec bfenc bfdec crc32
Application

Reduced Capture [%]
0
o

strsrch
Fig. 11. Reduced register state capture by using history table.

system at the instruction level, which is more abstract than
gate level. Instruction-level fault injection, also known as
software-implemented fault injection (SWIFI) [38], [39], is
selected because:

i. The focus of this paper is about checkpointing and
recovery, and not detection. As such, we only imple-
mented an instruction level fault injection test proce-
dure. Performing fault injection test at gate level for
a very large system, such as a processor, requires sig-
nificant implementation effort and time, including
implementation and simulation time.

ii. All checkpoint/recovery techniques only react to fault
occurrence after the fault is detected. We have existing
detection method implemented for this processor,
which can detect the bit-flips injected at the instruction
level. Gate-level fault injection will require a compati-
ble detection mechanism to be implemented as well
(which is beyond the scope of this paper).

iii. Instruction-level injection can result in sufficient
manifestation in processor architecture for the pur-
poses of testing checkpoint and recovery. Such mani-
festation includes incorrect writes to registers and
memory, as well as incorrect operations.

In order to inject three types of bit-flips in data, address,
and control bits, at the instruction level, we directly inject
bit-flips into the instruction code. To inject a bit flip, a ran-
dom location of the instruction memory is chosen. Then a
random bit of the instruction code at the location is flipped
to the opposite binary value. For one instruction, depending
on the exact bit, which is flipped, the manifestation of the
bit flip varies. The bit flip in opcode field results incorrect
operation, which represents the control fault. The bit flip in
other fields, e.g., operand name and immediate data fields, rep-
resents datapath fault.

The number of fault injections is 1,000, in order to obtain
a small error margin (4 percent with 99 percent confidence
level) according to [40], for each application. We inject one
fault for each iteration. The test consists of three procedures:
(1) injecting a fault at compile time to the instruction mem-
ory data file; (2) invoking the HDL simulator to run the
application; and, (3) collecting the run-time behavior from
the simulation transcript.

To make the simulation as close as possible to a realis-
tic one, we implement a detection technique similar to
IMPRES [30] to work with ReLl. The detection mecha-
nism monitors bit-flips of instructions via a control-flow
based mechanism, and communicates to REeLI at the end
of every basic block. Since the library code is difficult to
modify, the faults in library code are excluded in this
test.

656

Rollback Time [cycle]

crc32

bfenc bfdec strsrch

Application

adpcmenc adpcmdec

Fig. 12. Rollback time results.

7.3.2 Test Results

Fig. 12 depicts the recovery time of ReLI in presence of faults.
The result is obtained using Monte-Carlo simulation with
RTL models of ReL! processors. For each of the six applica-
tions, the minimum min, the maximum max, and the average
avg of recovery time are shown. Among the six applications,
bfdec has the largest average recovery time, i.e., 17.9
machine cycles, whereas adpcmdec has the smallest average
recovery time (13.8 machine cycles). The worst (maximum)
recovery time (62 machine cycles) is observed in bfdec, since
bfdec has larger basic blocks than the other applications,
and bfdec has fewer redundant state captures in the basic
blocks. The best (minimum) case (5 machine cycles) is found
in adpcmenc, adpcmdec, bfdec and crc32.

7.4 Logic Synthesis Results

We obtained synthesis results with TSMC 65 nm library using
the Synopsys Design Compiler. No specific timing and power
optimizations were applied in logic synthesis. There are three
metrics tested during logic synthesis from the resultant gate-
level netlist. First, we tested the timing of the critical path of
the processors, which determines the clock period and equiv-
alently, the operating frequency. Second, we tested the area
of the processor, which is equivalent to the number of gates.
At last, we measured the power of the processors. Given that
the focus of this work is front-end design, the place-and-route
(P&R) is not performed. Without P&R, the dynamic power
measurement can hardly be accurate. Hence, we only pro-
vide the leakage (static) power results here.

Table 4 presents critical path timing results. Column 2
shows the clock period, i.e., critical path timing, in nanosec-
onds. Column 3 shows the overhead, compared to the base
processor. In addition to the base and RELI processors, we
also tested the naive processor, which performs REeLI with-
out history table. Because the multiplier and divider from
ASIPmeister’s library are single-cycle and dominate the crit-
ical path timing, we removed these two components during
logic synthesis (targeting 1 ns clock period) to view ReLI's
influence on clock period. Without multiplier and divider,
the timing difference between Reli GP and Reli ASIP is neg-
ligible. Hence, we did not report the timing for each Reli-

TABLE 4
Critical Path Timing Results with TSMC 65 nm

Processor Clock Period [ns] Overhead [%]
Base 1.07 N/A
Naive 1.16 8.4

RELI 1.26 17.7

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017

1.4
5 adpcm-base %
2 13 1 bf-base
& crc32-base + A
o 1.2 1 strsrch-base
2 adpcm-reli % &
s 1.1 7 bf-reli
< cre32-reli g
0 1 strsrch-reli
K v
0.8
0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

Relative Area

Fig. 13. Relative area and leakage power of ReLl ASIPs for Mibench
normalized to base processor.

ASIP here. As a result, we observed that RELI increases the
critical path timing from 1.07 to 1.26 ns. Without the history
table, the critical path timing is less (1.16 ns). The timing
overhead of ReLI is 17.7 percent. The timing increase is due
to: (1) history table operations, i.e., the difference between
Base and Naive, and, (2) state-capture operations, i.e., the dif-
ference between Naive and RELL

Fig. 13 shows the relative area cost and leakage power
consumption of ReL1 and base ASIPs, normalized to the base
GP (see Section 7.1 for explanation of the processor types).
For this result, we targeted 10 ns (i.e., 100 MHz) clock
period, which is viable for all ReLI processors with multi-
plier and divider. Both adpcmenc and adpcmdec ASIPs
are shown as adpcm-reli, given that the hardware of ReLI
ASIP for adpcmenc and adpcmdec is same. So are bf
(bfenc and bfdec) ASIPs. The postifx ”-base” indicates
the base ASIP (i.e., without Reli functionalities) for one
application.

In general, due to instruction-set pruning, all base ASIPs
consumes less area and leakage power than the base GP. All
Reli ASIPs are larger and more power-hungry than the base
GP and base ASIPs. In comparison to the corresponding base
ASIP, the strsrch Reur ASIP has the lowest overhead in
both area (30.5 percent) and leakage power (29.3 percent),
while the bf ReLI ASIP has the largest overhead in both area
(46.1 percent) and leakage power (42.3 percent). On average,
ReLr ASIP costs 38.9 percent more area, and 38.3 percent
more leakage power, than the corresponding base ASIP.

In order to observe RELI's worst-case hardware overhead
for general use cases, we also studied the ReL1 GPs targeting
larger SPECINT2006 applications. Note that ReLt GPs have
full integer instruction set implemented, without instruction
set pruning. Hence, the difference in the results for different
applications comes from the difference in CS size.

Fig. 14 presents the relative area cost and leakage
power consumption of RELI GPs, normalized to the base GP.
Amongst the six applications, mcf shows the lowest
overhead in area (53.8 percent) and leakage power

1.8

bzip2
1.7 gee

sjeng
1.6 h.264
A astar
1.5 T
1.5 1.55 1.6 1.65 1.7 1.75 1.8
Relative Area

O DX +X0O

Relative Leakage Power

Fig. 14. Relative area and leakage power of ReLI general processors for
SPECINT normalized to base processor.

LI ET AL.: FINE-GRAINED CHECKPOINT RECOVERY FOR APPLICATION-SPECIFIC INSTRUCTION-SET PROCESSORS 657

70 ‘ ‘ ‘
60 4 Reg xxxx) E
Mem z=xz
» 50 3
N
3 40 3
n 30 E
© 20 2
10 3
Qo 2 Ok O Cra St Qs b5, n Sy
%o,b%o,bfeoc febc ron?g 7 SrObs’Gr 8//09900 'eé‘qlbcf 7 ehgh/o
SN
Application
Fig. 15. CS size results.
Non-CS &xxxxa CS =z
2 100
g 80
< 60
S 40 33
c
8 20
2 o

g, Wb, %on, Vo Yo
6’/70 O’@O
Reli Processor

S//-S ’C‘b I’Vc

Fig. 16. Area distribution in ReL processors.

(53.9 percent), while h. 264 consumes the highest overhead
in area (78.7 percent) and leakage power (76.2 percent). We
also have the results for MiBench applications. However,
as the hardware cost of ReLt GPs for SPECINT2006 applica-
tions are much higher than MiBench, for the sake of brev-
ity, we only report the results of ReLi GPs for six
SPECINT2006 applications here.

Further, we also tested a synthetic worst-case scenario,
which is a ReLt GP capable of running both h.264 and gcc
applications from SPECINT2006 suite. This ReLr GP is
labeled as WC in Fig. 14. Amongst all the applications in the
experiment, gcc has the largest number of register check-
pointing (i.e., register CS size), while h.264 has the largest
number of memory checkpointing (i.e., memory CS size). As
a result, WC ReL1 GP has the highest overhead, i.e., 79.3 per-
cent for area overhead and 77.8 percent for leakage power
overhead. Note, the hardware overhead (area and power) is
calculated by comparing the RELI processor to the baseline
processor. In this comparison, for both types of processors,
only the integer unit is included, while the memory, which
usually is more than three times larger than an integer unit,
is excluded. If we include the memory into the calculation,
which is common in other studies, the hardware overhead
will become very small (below 20 percent when a memory of
3x area of integer unit is considered). In this experiment, the
hardware overhead for error detection is 1 percent of base
processor. Around 10 percent more execution time (due to
10 percent increase in code size) is also needed.

In order to see the hardware cost in depth, we divided
the hardware cost into two categories: (1) the CS cost, and,
(2) the non-CS cost, which includes the base processor and
the logic circuits implementing the control and data transfer
for checkpointing and rollback. Fig. 15 shows the CS size (in
entires/slots) required by each application for performing
ReLL This result is obtained from the profiling stage during
the ASIP design flow, discussed in Section 6. Fig. 16
presents the area distribution of CS and non-CS hardware
in ReLr ASIPs, each targeting one of the six applications

Non-CS =xxx1 CS ez

& 100

“3’ 80

& 60

S 40

3 20

<

@ 0 3 3 7o) 4, 1 S, b,

%, B, e, 0% 03 s, (o]
o c e Se = (e
'77@,70 /"er 7
Reli Processor
Fig. 17. Power distribution in ReL processors.

TABLE 5
Critical Path Timing Results with
Xilinx Virtex-7 After P&R

Processor Clock Period [ns] Overhead [%]
Base 5.986 N/A
Naive 6.096 1.84
RELI 6.277 4.86

selected from MiBench suite, as well as ReL1 GP targeting
WC. In each application, the CS size is determined by the cor-
responding application’s runtime behavior (the number of
writes in basic blocks).

We observed the correlation between the area distribu-
tion in Fig. 16 and CS size required for each application in
Fig. 15. The application, which requires larger CS size, tends
to have larger proportion of CS area. As a result, the WC ReLI
processor has the largest proportion (28 percent) of CS area,
while the strsrch ReLl processor has the smallest propor-
tion (4 percent) of CS area. For leakage power shown in
Fig. 17, similar results are found. The WC ReLI GP leads the
proportion (24 percent) of CS leakage power, while the
strsrch Reu ASIP has the smallest proportion (4 percent)
of CS leakage power.

7.5 FPGA Synthesis Results

In order to observe the timing impact of ReLI after P&R, we
synthesized ReL1 GP, Naive checkpoint/recovery processor,
and Base processor for FPGA. The target FPGA device is
Xilinx Virtex-7."" Table 5 presents both clock period
(Column 2) and overhead (Column 3) of ReLi, Naive, and
Base processors. Due to the increased complexity of hard-
ware, RELI raises the critical path timing from 5.9 ns (Base) to
6.3 ns when implemented on an FPGA. Hence, the overhead
of ReLI after P&R is about 4.86 percent. In comparison to the
timing results in Table 4, the overhead is considerably
lower. There are two possible reasons: (1) the FPGA LUT,
limits the highest possible operating frequency of the base
processor; and, (2) the wires, which are generated from
P&R, dominate timing, and overwhelm the logic elements.

7.6 Wall-Clock Time Overhead

To study the overall performance overhead of ReLI, we cal-
culated the wall-clock time of RELI based on the simulation
results (clock cycles for execution) and synthesis results
(critical path timing). Fig. 18 depicts the wall-clock time

11. http:/ /www xilinx.com/products/silicon-devices/fpga/ virtex-
7.html

658
TSMC-w/-MD —A— TSMC-w/0-MD ()~ FPGA -]
— 20 A S —— - Fe— <
2 16 ©
B 12
2 8
R o B e Elue o — i1
@) N
0 s T T :
adpcmenc adpcmdec bfenc bfdec crc32 strsrch
Application

Fig. 18. Wall-clock time overhead.

overhead of six MiBench applications, based on three dif-
ferent timing results. TSMC-w/-MD denotes the overhead
calculated using the critical path timing (i.e., 10 ns) with
multiplier and divider in the processor, while TSMC-w/o-
MD denotes the overhead calculated using the timing
(shown in Table 4) without multiplier and divider in the
processor. These two timing results are both generated from
logic synthesis using TSMC65nm technology. FPGA denotes
the overhead calculated using the timing (shown in Table 5)
on FPGA, instead of ASIC. FPGA results are affected by
P&R, while the TSMC ones are not.

Due to the larger overhead in critical path timing, ReL has
the highest wall-clock time overhead (on average 18.7 per-
cent) for the TSMC-w/ o-MD processor executing the six appli-
cations. With FPGA, ReLI incurs much less wall-clock time
overhead (5.7 percent on average). As TSMC-w/ -MD timing is
constant (due to one-cycle multiplier and divider), the wall-
clock time overhead is as same as clock-cycle overhead.

7.7 Checkpoint Storage Implementation
Comparison

In this section, we used Cacti cache modeling tool to study
the overhead of CS cost. The motivation for obtaining this
result is as follows: (1) CS is a significant factor in hardware
cost of REeLL In fact, the CS of WC-RELI occupies an area equiv-
alent to 47.9 percent of the base processor. (2) In previous
results, ReLI's CS is implemented as an array of D-flip/flops
(DFFs). ReLr's CS could also be implemented as SRAM as
well, similar to a L1 cache, which is more efficient for larger
data array.

Fig. 19 shows the scatter plot including four different CS
implementations configured for WC. The x-axis is the relative
area while the y-axis is the relative leakage power. Both area
and power numbers are normalized to the base processor.
The result for TSMC-DFF is from logic synthesis. The results
for other three implementations are from Cacti, for differ-
ent SRAM cells. All the implementations are given for 65
nm technologies. TSMC-DFF has the highest area cost
(around 48 percent of base processor). ITRS-HP-SRAM, is
implemented with high-performance SRAM cells, with the
highest cost in leakage power (2.5x base processor)

[} L L

5 22 A TSMC-DFF]
o= ITRS-HP-SRAM

o 2 ITRS-LOP-SRAM @ 3
g 15 ITRS-LSTP-SRAM E
& 1

S

CI>.) 0.5 K
g 0 B4 ‘ ‘ ‘ ‘ ‘ ‘

2 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

Relative Area

Fig. 19. Relative area and leakage power of CS implementations for wc.

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017

TABLE 6

Checkpoint Recovery Comparison
Technique Checkpointing Rollback CD
RELI 031t01.8 % < 62 cycles <624 B
OCEAN [24] 4to 10 % (100 cycles) <132 cycles <512B
P1200 [25] 10to 29 % million cycles <400 kB
SwicH [9] 1 % (256 cycles) < milliseconds 0.6 to 30 kB
ReVIVE [20] 1t022 % 0.1to1s <2.5MB

amongst all implementations, and the highest overall cost
amongst all the SRAM implementations. ITRS-LSTP-
SRAM, implemented with low stand-by power SRAM cells,
has negligible leakage power cost (0.04 percent of base pro-
cessor). ITRS-LOP-SRAM, implemented with low operating
power SRAM cells, shows the least cost in area (34.2 percent
of base processor). In general, all the SRAM CS implementa-
tions are much smaller than DFF CS for WC.

7.8 Comparison

Table 6 quantifies features of CR mechanisms of ReLI and
four state-of-art techniques. These are Ocean [24],
P1200 [25], SwicH [9], and ReVive [20]. Due to ReLI's finer
granularity (at instruction and basic block level), ReL shows
minimum checkpointing (state capture) time overhead, roll-
back time overhead, and requires limited checkpoint data
size, in comparison to other techniques. RELI increases the
program execution time by just 1.8 percent in the worst case
(0.76 percent on average). Further, ReLI needs at most 62
clock cycles, and is faster than others for one individual roll-
back. Regarding checkpoint data (CD) size, RELI requires
about 624 bytes (as the worst case for SPECINT2006) in the
worst case, which is less than P1200 and SwicH, and much
less than REVIVE. OCEAN’s data size is configured by the opti-
mization algorithm based on the given cost constraints, and
occupies less than 512 B in the optimal design for applica-
tion FFT.

8 FURTHER DISCUSSION AND PERSPECTIVES

Generality. In order to successfully execute applications, the
ReLI processor must have sufficient checkpoint storage for
every checkpoint period. If there is insufficient amount of
checkpoint storage, then a check is forced, by inserting a
jump instruction which jumps to the next instruction.

Reliability. Considering the fault occurrence in REeLI's
checkpoint storage, standard coding-based error correcting
techniques (e.g., ECC) can be adopted to improve the reli-
ability of the checkpoint storage. Another possible reliability
enhancement can be focused on the rollback stage, where
the techniques such as two-time-recovery used in the recov-
ery mode in IBM S/390 G5 [21] can be adopted to guarantee
that the recovery is executed correctly. Permanent faults are
not within the scope of the paper. If such a fault is detected,
ReL processor will probably keep rolling back repeatedly in
one basic block. In this case, a watchdog timer is typically
used to stop the processor.

Scalability. ReLl currently is studied, implemented, and
tested targeting uni-processor embedded systems. However,
this technique can be scaled to multi-processor embedded
systems (such as an MPSoC) by taking a communication

LI ET AL.: FINE-GRAINED CHECKPOINT RECOVERY FOR APPLICATION-SPECIFIC INSTRUCTION-SET PROCESSORS 659

mechanism into consideration. Further exploration of MPSoC
systems would be interesting.

9 CONCLUSION

In this paper, we have presented a novel approach for recov-
ering embedded applications from transient faults by custom-
izing instructions. ReLl realizes CR by integrating the
functionalities into native instructions of the base processor.
The augmented processor, i.e., ReLI processor allows CR to be
executed at a finer granularity than perviously possible, such
that the checkpoint data size is reduced greatly. To implement
ReLI processor, we have built an ASIP design flow, based on a
commercial ASIP design tool, which handles ADL-to-RTL
synthesis. We have simulated ReLI using assembly code from
MiBench benchmark suite, compiled using SimpleScalar
tool set. The experimental results show that the fault-free exe-
cution time overhead is only 0.76 percent on average. From
the fault injection test, we also found that in the worst case,
the recovery time is only 62 cycles. RELI costs 44.4 percent area
and 45.6 percent leakage power overhead on average, and
79.3 and 77.8 percent in the worst case found in SPEC-
INT2006 and MiBench suites.

ACKNOWLEDGMENTS

This work was supported in parts by the German Research
Foundation (DFG) as part of the priority program
“Dependable Embedded Systems” (SPP 1500-spp1500.itec.
kit.edu).

REFERENCES

[1] J. M. Rabaey, “Design at the end of the silicon roadmap,” in Proc.
Asia South Pacific Des. Autom. Conf., 2005, pp. 1-2.

[2] V. Narayanan and Y. Xie, “Reliability concerns in embedded
system designs,” IEEE Comput., vol. 39, no. 1, pp. 118-120, Jan. 2006.

[3] J. A. Blome, S. Gupta, S. Feng, and S. Mahlke, “Cost-efficient
soft error protection for embedded microprocessors,” in Proc.
Int. Conf. Compilers Archit. Synthesis Embedded Syst., 2006,
pp. 421-431.

[4] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by dupli-
cated instructions in super-scalar processors,” IEEE Trans. Rel.,
vol. 51, no. 1, pp. 63-75, Mar. 2002.

[5] S.K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” ACM SIGARCH Comput. Archit.
News, vol. 28, pp. 25-36, May 2000.

[6] D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems:
Design and Evaluation, 3rd ed. Natick, MA, USA: A. K. Peters,
1998.

[7]1]. Henkel, et al., “Reliable on-chip systems in the nano-era: Les-
sons learnt and future trends,” in Proc. 50th Annu. Des. Autom.
Conf., 2013, pp. 99:1-99:10.

[8] C.-C. Li and W. Fuchs, “Catch-compiler-assisted techniques for
checkpointing,” in Proc. 20th Int. Symp. Fault-Tolerant Comput,
Jun. 1990, pp. 74-81.

[9] R. Teodorescu, J. Nakano, and J. Torrellas, “SWICH: A prototype
for efficient cache-level checkpointing and rollback,” IEEE Micro,
vol. 26, no. 6, pp. 28-40, Nov./Dec. 2006.

[10] N. Cheung, S. Parameswaran, and J. Henkel, “Battery-aware
instruction generation for embedded processors,” in Proc. Asia
South Pacific Des. Autom. Conf., 2005, pp. 553-556.

[11] P.Ienne and R. Leupers, Customizable Embedded Processors: Design
Technologies and Applications. San Francisco, CA, USA: Morgan
Kaufmann, 2007.

[12] N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu, “An architectural
framework for providing reliability and security support,” in
Proc. Int. Conf. Depend. Syst. Netw., 2004, pp. 585-594.

[13] L. Wang, Z. Kalbarczyk, W. Gu, and R. K. Iyer, “An OS-level
framework for providing application-aware reliability,” in Proc.
12th Pacific Rim Int. Symp. Depend. Comput., 2006, pp. 55-62.

[14] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz,
“Application-level checkpointing for shared memory programs,”
in Proc. 11th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2004, pp. 235-247.

[15] W. R. Dieter and]. E. Lumpp Jr, “A user-level checkpointing
library for POSIX threads programs,” in Proc. 29th Annu. Int.
Symp. Fault-Tolerant Comput., 1999, Art. no. 224.

[16]]. Duell, P. Hargrove, and E. Roman, “The design and implemen-
tation of Berkeley Lab’s linux Checkpoint/Restart,” Lawrence
Berkeley National Laboratory, Dec. 2002.

[17] X.Ouyang, K. Gopalakrishnan, T. Gangadharappa, and D. Panda,
“Fast checkpointing by write aggregation with dynamic buffer
and interleaving on multicore architecture,” in Proc. Int. Conf.
High Performance Comput., Dec. 2009, pp. 99-108.

[18] R. Ahmed, R. Frazier, and P. Marinos, “Cache-aided rollback error
recovery (CARER) algorithm for shared-memory multiprocessor
systems,” in Proc. 20th Int. Symp. Fault-Tolerant Comput., Jun. 1990,
pp- 82-88.

[19] D.Hunt and P. Marinos, “A general purpose cache-aided rollback
error recovery (CARER) technique,” in Proc. 17th Int. Symp. Fault-
Tolerant Comput. Syst., 1987, pp. 170-175.

[20] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-effective
architectural support for rollback recovery in shared-memory
multiprocessors,” in Proc. 29th Annu. Int. Symp. Comput. Archit.,
2002, pp. 111-122.

[21] T. Slegel, et al., “IBM’s S/390 G5 microprocessor design,” IEEE
Micro, vol. 19, no. 2, pp. 12-23, Mar./Apr. 1999.

[22] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood,
“SafetyNet: Improving the availability of shared memory multi-
processors with global checkpoint/recovery,” SIGARCH Comput.
Archit. News, vol. 30, pp. 123-134, May 2002.

[23] M. Salehi, M. K. Tavana, S. Rehman, M. Shafique, A. Ejlali, and]J.
Henkel, “Two-state checkpointing for energy-efficient fault toler-
ance in hard real-time systems,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 24, no. 7, pp. 2426-2437, Jul. 2016.

[24] M. M. Sabry, D. Atienza, and F. Catthoor, “OCEAN: An optimized
HW/SW reliability mitigation approach for scratchpad memories
in real-time SoCs,” ACM Trans. Embedded Comput. Syst., vol. 13,
no. 4s, pp. 138:1-138:26, Apr. 2014.

[25] E. Wchter, N. Ventroux, and F. G. Moraes, “A context saving fault
tolerant approach for a shared memory many-core architecture,”
in Proc. IEEE Int. Symp. Circuits Syst., 2015, pp. 1570-1573.

[26] G. A. Reis, J. Chang, and D. I. August, “Automatic instruction-
level software-only recovery,” IEEE Micro, vol. 27, no. 1, pp. 36—
47,Jan./Feb. 2007.

[27] T. Dell, “A white paper on the benefits of chipkill-correct ECC for
PC server main memory,” IBM Microelectronics Division, Nov.
1997.

[28]]. Henkel and S. Parameswaran, Designing Embedded Processors: A
Low Power Perspective, 1st ed. Berlin, Germany: Springer, 2007.

[29] P.R. Panda, N. D. Dutt, and A. Nicolau, “On-chip versus off-chip
memory: The data partitioning problem in embedded processor-
based systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 5,
no. 3, pp. 682-704, Jul. 2000.

[30] R. G. Ragel and S. Parameswaran, “IMPRES: Integrated monitor-
ing for processor reliability and security,” in Proc. Des. Autom.
Conf., 2006, pp. 502-505.

[31] T. M. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infra-
structure for computer system modeling,” IEEE Comput., vol. 35,
no. 2, pp. 59-67, Feb. 2002.

[32] C. Price, “MIPS IV Instruction Set, revision 3.2,” MIPS Technolo-
gies, Inc., Mountain View, CA, Sep. 1995.

[33] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking by
software signatures,” IEEE Trans. Rel., vol. 51, no. 1, pp. 111-122,
Mar. 2002.

[34] M. Itoh, et al., “PEAS-III: An ASIP design environment,” in Proc.
Int. Conf. Comput. Des., 2000, pp. 430-436.

[35] J. Peddersen, S. L. Shee, A. Janapsatya, and S. Parameswaran,
“Rapid embedded hardware/software system generation,” in
Proc. Int. Conf. VLSI Des., 2005, pp. 111-116.

[36] M. R. Guthaus,]J. Ringenberg, D. Ernst, T. Mudge, R. Brown, and
T. Austin, “MiBench: A free, commercially representative embed-
ded benchmark suite,” in Proc. IEEE Int. Symp. Workload Character-
ization, 2001, pp. 3-14.

[37] D. Burger and T. M. Austin, “The SimpleScalar tool set, version
2.0,” SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13-25,
1997.

660

[38] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H.
Leber, “Comparison of physical and software-implemented fault
injection techniques,” IEEE Trans. Comput., vol. 52, no. 9,
pp. 1115-1133, Sep. 2003.

D. T. Stott, G. Ries, M.-C. Hsueh, and R. K. Iyer, “Dependability
analysis of a high-speed network using software-implemented
fault injection and simulated fault injection,” IEEE Trans. Comput.,
vol. 47, no. 1, pp. 108-119, Jan. 1998.

R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert,
“Statistical fault injection: Quantified error and confidence,” in
Proc. Conf. Des. Autom. Test Europe, 2009, pp. 502-506.

[39]

[40]

Tuo Li (M’15) received the BE degree in elec-
tronic science and technology from Hefei Univer-
sity of Technology, Hefei, China, in 2008, and the
PhD degree in computer science and engineering
from the University of New South Wales, Sydney,
Australia, in 2014. He is currently a postdoctoral
researcher in the School of Computer Science
and Engineering, University of New South Wales.
His current research interests include cyber secu-
rity and reliability for embedded systems. He is a
member of the IEEE.

Muhammad Shafique (M’11-SM’16) received
the PhD degree in computer science from Karls-
ruhe Institute of Technology, in January 2011. He
is a full professor with Vienna University of Tech-
nology (TU Wien), Austria, where he is directing
the chair of Computer Architecture and Robust,
Energy-Efficient Technologies (CARE-Tech). He
was a senior research group leader with Karls-
ruhe Institute of Technology, Germany, for more
than 5 years. Before, he was with Streaming Net-
works Pvt. Ltd. as senior embedded systems
engineer for three years. His research interests include power/energy-
efficient, reliable, and adaptive computing systems covering various
design abstractions of the hardware and software stacks (like micro-
architecture, architecture, run-time system, and compiler), embedded
systems, emerging technologies and computing paradigms, and their
applications in 1oT, CPS, and ICTD. He received 2015 ACM/SIGDA Out-
standing New Faculty Award, six gold medals, and several best paper
awards and nominations at prestigious conferences like CODES+ISSS,
DATE, DAC, and ICCAD, Best Master Thesis Award, and Best Elective
Lecturer Award. He is the TPC co-chair of ESTIMedia 2015 and 2016,
and has served on the TPC of several IEEE/ACM conferences like
ICCAD, DATE, CASES, and ASPDAC. He holds one US patent. He is a
senior member of the IEEE.

Jude Angelo Ambrose received the MSc degree
from the University of Northumbria, Newcastle-
upon-Tyne, United Kingdom, and the PhD degree
in computer engineering from the University of
New South Wales. He is a senior research engi-
neer with Canon Information Systems Research
Australia, Australia, and a visiting fellow with the
University of New South Wales, Australia. His
research interests include automation for embed-
ded systems design, high speed and low power
multicore architectures, and secure and reliable
embedded systems. He is a member of the IEEE.

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.4, APRIL2017

Jorg Henkel (M'95-SM'01-F’15) received the PhD
degree from Braunschweig University with “Summa
cum Laude”. He is currently with Karlsruhe Institute
of Technology, Germany, where he is directing the
chair of Embedded Systems CES. Before, he was a
senior research staff member with NEC Laborato-
ries, Princeton, New Jersey. He has/is organizing
various embedded systems and low power ACM/
IEEE conferences/symposia as general chair and
program chair and was a guest editor on these topics
in various Journals like the IEEE Computer Maga-
zine. He was a program chair of CODES01, RSP02, ISLPEDO06, SIPS08,
CASESO09, Estimedial1, VLSI Design12, ICCAD12, PATMOS13, NOCS14
and served as a general chair of CODES02, ISLPEDO9, Estimediai2,
ICCAD13, and ESWeek16. He is/has been a steering committee member of
major conferences in the embedded systems field like at ICCAD, ESWeek,
ISLPED, Codes+ISSS, CASES and is/has been an editorial board member
of various journals like the IEEE Transactions on Very Large Scale Integra-
tion, the IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, the IEEE Transactions on Multi-Scale Computing Systems,
the ACM Transactions on Cyber Physical Systems, the Journal of Low Power
Electronics and Applications, etc. In recent years, he has given around 10
keynotes at various international conferences primarily with focus on embed-
ded systems dependability. He has given full/half-day tutorials at leading con-
ferences like DAC, ICCAD, DATE, etc. He received the 2008 DATE Best
Paper Award, the 2009 IEEE/ACM William J. McCalla ICCAD Best Paper
Award, the Codes+ISSS 2015, 2014, and 2011 Best Paper Awards, and the
MaXentric Technologies AHS 2011 Best Paper Award as well as the DATE
2013 Best IP Award and the DAC 2014 Designer Track Best Poster Award.
He is the chairman of the IEEE Computer Society, Germany Section, and
was the editor-in-chief of the ACM Transactions on Embedded Computing
Systems for two consecutive terms. He is an initiator and the coordinator of
the German Research Foundations (DFG) program on “Dependable Embed-
ded Systems” (SPP 1500). He is the site coordinator (Karlsruhe site) of the
Three-University Collaborative Research Center on Invasive Computing
(DFG TR89). He is the editor-in-chief of the IEEE Design & Test Magazine
since January 2016. He holds 10 US patent. He is a fellow of the IEEE.

Sri Parameswaran (SM’'04) received the BE
degree in electrical and computer systems engi-
neering from Monash University, Melbourne, VIC,
Australia, in 1986, and the PhD degree from the
University of Queensland, Brisbane, QLD, Aus-
tralia, in 1991. He is a professor in the School of
Computer Science and Engineering, University of
New South Wales, Sydney, NSW, Australia, where
he also serves as the program director of computer
engineering. His current research interests include
system level synthesis, low-power systems, high-
level systems, and network on chips. He has served on the program com-
mittees of several international conferences, such as the Design Automa-
tion Conference, the Design Automation & Test in Europe Conference, the
International Conference on Computer-Aided Design, the International
Conference on Hardware/Software Codesign and System Synthesis (as
the technical program committee chair), and the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems. He is
an associate editor of the IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems and the EURASIP Journal on Embed-
ded Systems. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

